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Resumen

Probaremos que un autómata celular en un subshift transitivo es casi equicontinuo o sensible.
Por otro lado, construimos un autómata celular en un full shift que no es ni casi equicontinuo en
promedio ni sensible en promedio. Además, utilizando algún tipo de skew product “local” entre
un shift y un autómata celular que parece un odómetro, mostramos que existe un autómata
celular casi diam-mean equicontinuo pero no casi equicontinuo.
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Abstract

We show that a cellular automaton on a transitive subshift is either almost equicontinuous or
sensitive. On the other hand, we construct a cellular automaton on a full subshift that is neither
almost mean equicontinuous nor mean sensitive. Furthermore, using some type of “local” skew
product between a shift and an odometer looking cellular automaton, we show that there exists
an almost diam-mean equicontinuous cellular automaton that is not almost equicontinuous.
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ayudaron a crecer como matemático y persona, me hicieron sentir bienvenido.

Le agradezco con mucho cariño y amor a Maricela Vidal Ramirez, por todos estos años que
pasamos juntos en los cuales me apoyó, me dio su cariño y amor.
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Introduction

Sensitivity to initial conditions (or simply sensitivity) is one of the classical notions of chaos on
dynamical systems. Such notion was introduced for topological dynamical systems by Gucken-
heimer in [17]. By a topological dynamical system (shortly TDS) we mean a pair (X, T )
such that X is a compact metric space (with metric d) and T : X → X is a continuous map. A
TDS is sensitive if given any region of X, there exist two points in the region and a time unit
n ∈ N such that the nth iterates of the two points under the map T are “significantly separated”;
that is: if there exists ε > 0 such that for every non-empty open set U ⊆ X there exist x, y ∈ U
and n > 0 such that d(T nx, T ny) > ε. A notion of order that contrasts sensitivity is equicontinu-
ity (or Lyapunov stability); a TDS is equicontinuous if {T n}n∈N is an equicontinuous family
of maps. One may also study this notion locally. A point x ∈ X is an equicontinuity point
of (X, T ) if the diameter of the images of a small ball around x will always stay small; that is:
if for every ε > 0 there exists δ > 0 such that diam(T iBδ(x)) < ε for every i ∈ N. We say a
TDS is almost equicontinuous if the equicontinuity points are dense in X. Using sensitivity
and equicontinuity one can classify transitive topological dynamical systems (see Definition 1.3).
Akin, Auslander and Berg proved that any transitive TDS is either sensitive or almost equicontin-
uous [1] (a generalization of the Auslander-Yorke dichotomy in [2], which is only for minimal sets).

The dichotomy mentioned above has some limitations, since sensitivity is not a very strong
form of chaos. The “largeness” of the set of all n ∈ N where this “significant separation” happens
for a particular pair of points in a given region, can be though of as a measure of how sensitive
the system is. If the set turns out to be rather “thin” with large gaps between consecutive
entries, then we may have some excuse for treating the system as practically non-sensitive. So,
if the large gaps between consecutive entries do not matter, we can take the averages of the
distances of the first nthiterations, this generates a sequence. If this sequence does not converge,
we could say that the TDS is mean sensitive (defined by Garćıa-Ramos [13]); that is: if there
exists ε > 0 such that for every non-empty open set U ⊆ X there exist x, y ∈ U such that

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
> ε.

In contrast, we have that a point x ∈ X is a mean equicontinuity point (defined by Fomin
[9]) if the diameter of the images of a small ball around x will stay small on average; that is: for
every ε > 0, there exists δ > 0 such that if d(x, y) < δ, then

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
≤ ε.

Similar to the classic case, one can classify transitive TDSs using the mean notions; that
is: a transitive TDS is either mean sensitive or almost mean equicontinuous [22, 13]. Mean
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equicontinuity/sensitivity has been studied in recent papers (see for instance [8, 14, 18, 15, 10] or
the survey [23]). The set of mean sensitive TDSs is properly contained in the set of sensitive TDSs.

A weaker notion of equicontinuity but stronger than mean equicontinuity, diam-mean
equicontinuity, requires that the diameter of small balls to stay small on average (see Defini-
tion 1.15). The notion of diam-mean equicontinuity has been used to characterize regularity
properties of the maximal equicontinuous factor [14], which are natural in the context of aperiodic
order and mean equicontinuity (introduced in [9, 26]).

Cellular automata (CA) were introduced by Ulam and von Neumann to model the evolution
of cells. We say that (X, T ) is a cellular automaton (CA) if X is a subshift and T : X → X
is continuous and commutes with σ, i.e., σ ◦ T = T ◦ σ. Cellular automata can be studied in the
context of TDS. For cellular automata, equicontinuity is strongly connected to local periodicity;
that is: if {T nxi}n∈N is periodic for all i ∈ Z [11]. Given a CA, it is not difficult to check that
a point is equicontinuous if and only if it is locally eventually periodic; that is: if {T nxi}n∈N
is eventually periodic for all i ∈ Z (in Proposition 2.12). However, for the mean versions of
equicontinuity this is not true. The notion of sensitivity in CA has been studied in many papers
(see for example, [20, 24, 16, 3, 27, 11]).

Kurka proved that any CA (not necessarily transitive) is either sensitive or almost equicon-
tinuous [21]. So, it is natural to seek the answers of the following questions:

• Is the set of almost equicontinuous CA properly contained in the set of almost diam-mean
equicontinuous CA?

• Is the set of almost diam-mean equicontinuous CA properly contained in the set of almost
mean equicontinuous CA?

• Can Kurka’s dichotomy be adapted for the (diam-)mean versions of equicontinuity/sensitivity?

• Does there exist an almost mean equicontinuous CA such that is diam-mean sensitive?

In Chapter 1 we will study some basic dynamical notions, such as transitivity, which plays
an important role in the dichotomy of these systems.

In Chapter 2, we introduce cellular automata (CA). We use Theorem 2.2 to give an equivalent
definition of CA. We will see that a CA is almost equicontinuous if and only if is not sensitive
(see Proposition 2.8). Transivity does not play a role in this dichotomy, at least not directly. In
Proposition 2.12 will show how equicontinuity and periodicity are related locally.

In Chapter 3, we provide four examples (the main results of the thesis). The first two
examples (The Pacman and The Pacman level 2 CA) are the first examples in the study of mean
equicontinuity/sensitivity on CA. In Section 3.1, to proof Theorem 3.14, we construct an almost
mean equicontinuous CA (Pacman) that is not almost equicontinuous. In Section 3.2, to proof
Theorem 3.18, we construct a CA (Pacman level 2) that is neither mean sensitive nor almost
mean equicontinuous. So, Kurka’s dichotomy does not hold for the mean notions on cellular
automata. In Section 3.3, to proof Theorem 3.40, we take some form of local skew-product
between a very regular CA (similar to an odometer) and a very chaotic CA on the shift map to
construct a CA that is almost diam-mean equicontinuous but not almost equicontinuous. In
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Section 3.4, we construct a CA that is neither almost diam-mean equicontinuous nor diam-mean
sensitive (in Theorem 3.43). In Section 3.5, we show that the Pacman and the Pacman level 2
CA are cofinitely sensitive. It is easy to see that every cofinitely sensitive TDS is diam-mean
sensitive. So, there exist CA that are almost mean equicontinuous and diam-mean sensitive,
and diam-mean sensitive CA such that they are neither almost mean equicontinuous nor mean
sensitive.

In Chapter 4, we give a set of questions on various topics related directly or indirectly to the
results of this thesis.
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Chapter 1

Topological dynamical systems

The main abstract object of study in this theses are topological dynamical systems.

Definition 1.1. A topological dynamical system (TDS) is a pair (X, T ) where X is a
compact metric space (with metric d) and T : X → X is continuous map.

Definition 1.2. Let (X, T ) be a TDS.

1. A point x ∈ X is periodic, if there exists p > 0 with T px = x. The least p with this
property is called the period of x.

2. A point x ∈ X is eventually periodic, if Tmx is periodic for some m ≥ 0.

Definition 1.3. Let (X, T ) be a TDS. We say that (X, T ) is transitive if for every pair of
non-empty open sets U and V there exists n > 0 such that T−nU ∩ V �= ∅. A transitive point
is a point such that its orbit is dense.

For example a TDS that consists of one periodic orbit is transitive, but a TDS formed by
two disjoint periodic orbits is not transitive.

A subset of a topological space is residual (or comeagre) if it includes the intersection
of countably many dense open sets. By the Baire category theorem, residual sets of complete
metrizable spaces are always dense.

Definition 1.4. Let (X, T ) be a TDS and x ∈ X.

1. The point x is an equicontinuity point of (X, T ) if

∀ε > 0, ∃δ > 0 such that ∀y ∈ Bδ(x), ∀n ≥ 0, d(T nx, T ny) < ε.

The set of equicontinuity points of (X, T ) is denoted by EQ.

2. (X, T ) is equicontinuous if EQ = X.

3. (X, T ) is almost equicontinuous if EQ is a residual set.

4. (X, T ) is sensitive if there exists ε > 0 such that for every non-empty open set U ⊆ X
there exist x, y ∈ U and n �= 0 such that

d(T nx, T ny) > ε.
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Clearly, if (X, T ) is equicontinuous, then it is almost equicontinuous. The other way around
is not true (see Example 2.7). Straightforward examples of equicontinuous TDS are the constant
function or any finite periodic system. An easy sensitive example is the full shift, for this we
need to define symbolic dynamical systems.

Definition 1.5.

1. Given a finite non-singular set A (called an alphabet), we define the A-full shift as AZ. If
X is the A-full shift for some finite A we say that X is a full shift.

2. Given x ∈ AZ, we represent the i-th coordinate of x as xi. Also, given i, j ∈ Z with i < j,
we define the finite word x[i,j] = xi . . . xj . We denote by An the set of words of A of length
n ≥ 1.

3. We endow any full shift with the metric

d(x, y) =

�
2−i if x �= y where i = min{|j| : xj �= yj};
0 otherwise.

This metric generates the same topology as the prodiscrete topology.

4. For any full shift AZ, we define the shift map σ : AZ → AZ by σ(x)i = xi+1. The shift map
is continuous (with respect to the previously defined metric).

5. We say X is a subshift (or shift space) if X ⊆ AZ is closed and σ-invariant (σ(X) = X).

Let n ∈ N. We will denote the balls of radius 2−n with Bn(x). That is,

Bn(x) = {y ∈ AZ : xi = yi∀i ∈ [−n, n]}.

A cylinder in a product space AZ is any set

[w] = {x ∈ AZ; x[0,|w|) = w},

where w ∈ An and n > 0. A cylinder set is a ball. If x ∈ [w] then [w] = B|w|−1(x), so [w] is an
open set. The complement of [w] is a finite union of cylinders, so it is open too. Thus every
cylinder is clopen (close and open). Consider a nonempty open set U ⊆ AZ. For any x ∈ U
there exists n ≥ 0 such that Bn(x) ⊆ U . Thus, there exists w ∈ An+1 such that [w] = Bn(x).

It is not difficult to check that the full shift is sensitive, in fact every subshift without isolated
points is sensitive. An example of an equicontinuous but not periodic TDS is the odometer.
This TDS is called odometer because the dynamics on finite sections look exactly like the mileage
meter on a car. The following example defines it in detail.

Example 1.6. Let X = ZN
2 equipped with the prodiscrete topology. We also give X a group

structure with the operation of adding each coordinate with carrying. That is, if y = x · x�, then
yi = xi + x�

imod2 unless xi−1 + x�
i−1 > 0 and yi−1 = 0, in this case yi = xi + x�

i + 1mod2. The
binary odometer is the TDS (X, T ) where Tx = x · (1, 0, 0, ...) (for a survey on odometers
see [7]). If xi = x�

i for all i ∈ [0, n] then Txi = Tx�
i for all i ∈ [0, n]. This implies that (X, T ) is

equicontinuous. It is not difficult to check that this TDS has no periodic points.
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Sensitivity and almost equicontinuity can be used to give a classification of transitive
topological dynamical systems.

Theorem 1.7 (Akin-Auslander-Berg dichotomy [1]). Transitive topological dynamical systems
are sensitive if and only if they are not almost equicontinuous.

Proof. Let (X, T ) be a transitive system and ε > 0. Firstly, we are going to show that the set

EQε := {x ∈ X : ∃δ, ∀y, z ∈ Bδ(x), ∀n ≥ 0, d(T ny, T nz) < ε}
is open. Let x ∈ EQε. Therefore, there exists a δ > 0 such that for every y, z ∈ Bδ(x) satisfies
that d(T iy, T iz) < ε for all n > 0. Let y ∈ Bδ(x). Let us take δ� < min{d(x, y), δ − d(x, y)}.
Then, Bδ�(y) ⊆ Bδ(x). Hence, Bδ(x) ⊆ EQε. Therefore, EQε is open.

Assume that EQε is nonempty and non dense. Then U = X \ EQε is open and nonempty.
So, since (X, T ) is transitive there exists n > 0 such that

∅ �= U ∩ T−nEQε ⊆ U ∩ EQε = ∅,
and this is a contradiction. Thus, EQε for any ε > 0, is either empty or dense. If for all ε > 0,
EQε is nonempty. Then, EQ =

�
m≥1 EQ 1

m
is a residual set. So, (X, T ) is almost equicontinuous.

If EQε = ∅ for some ε > 0, then the system is sensitive: For any x ∈ X and for any δ > 0 there
exist y, z ∈ Bδ(x) and n ≥ 0 such that d(T ny, T nz) ≥ ε. It follows that either d(T ny, T nx) ≥ ε

2

or d(T nz, T nx) ≥ ε
2
.

Without transitivity we may have cases just as the following example.

Example 1.8. Let

X = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0} ∪ {(x, y, z) ∈ R3 : (x− 1)2 + z2 = 1, y = 0},
and

T (r cos t, r sin t, 0) = (r cos 2t, r sin 2t, 0)

T (1− cos t, 0, sin t) = (1− cos 2t, 0, sin 2t).

The TDS (X, T ) does not have equicontinuity points but is not sensitive.

It is easy to check that every isometry is equicontinuous. In particular, irrational rotations
of the circle are also equicontinuous non-periodic TDS. If we code this system into a subshift we
obtain a very regular TDS with no equicontinuity points. This means that equicontinuity is a
very strong property.

Example 1.9. Let α ∈ (0, 1) \Q and consider the rigid translation Rα : [0, 1) → [0, 1) given by
Rα(t) = t + α(mod 1), for t ∈ [0, 1). Consider the partition {[0, 1 − α), [1 − α, 1)} of the unit
interval and define a coding map Iα : [0, 1) → {0, 1} by

Iα(t) =

�
0 if t ∈ [0, 1− α),
1 if t ∈ [1− α, 1),

for t ∈ [0, 1). The one-sided Sturmian subshift with parameter α is the space

Xα := {{Iα(Ri
α(t))}i∈N : t ∈ [0, 1)} ⊆ {0, 1}N,

together with the shift map σα : Xα → Xα given by σα = σ|Xα , for x = (xi)i∈N ∈ Xα and for
i ∈ N. It is easy to see that (Xα, σα) is sensitive.

7



We now introduce the mean versions of equicontinuity and sensitivity. Mean equicontinuity
is weaker than equicontinuity and sensitivity is weaker than mean sensitivity.

Definition 1.10. Let (X, T ) be a TDS and x ∈ X.

1. We call x a mean equicontinuity point of (X, T ) if, for every ε > 0, there exists δ > 0
such that if d(x, y) < δ, then

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
≤ ε.

We denote the set of mean equicontinuty points of (X, T ) by EQM .

2. The TDS (X, T ) is mean equicontinuous if X = EQM .

3. The TDS (X, T ) is almost mean equicontinuous if EQM is a residual set.

4. The TDS (X, T ) is mean sensitive if there exists ε > 0 such that for every non-empty
open set U ⊆ X there exist x, y ∈ U such that

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
> ε.

The Sturmian subshift is mean equicontinuous but we will not prove this here. An easier
example is the following.

Example 1.11. Let X ⊂ {0, 1}Z be the subshift consisting of sequences that contain at most
one 1. Notice that, for all x, y ∈ X we have that

lim sup
n→∞

�n
i=0 d(σ

ix, σiy)

n+ 1
= 0.

So, we have that (X, σ) is mean equicontinuous. Furthermore, one can easily check that 0∞ is
not an equicontinuity point.

Proposition 1.12. [13, Lemma 5]
Let (X, T ) be a TDS and ε > 0. Set

EQM
ε = {x ∈ X : ∃ δ > 0, ∀ y, z ∈ Bδ(x), lim sup

n→∞

�n
i=0 d(T

iy, T iz)

n+ 1
< ε}. (1.1)

Then, EQM
ε is open and EQM =

�
m>0 EQM

1
m

. Furthermore, if EQM is nonempty, then EQM is

dense if and only if it is a residual set.

Proof. Let x ∈ EQM
ε . Therefore, there exists δ > 0 such that for every y, z ∈ Bδ(x) it follows

that:

lim sup
n→∞

�n
i=0 d(T

iy, T iz)

n+ 1
< ε.

Let y ∈ Bδ(x). Let us take δ� < min{d(x, y), δ − d(x, y)}. Then, Bδ�(y) ⊆ Bδ(x). Hence,
Bδ(x) ⊆ EQM

ε and EQM
ε is open.

Next, we are going to proof that EQM =
�

m>0 EQM
1
m

.

8



⊆: Let x ∈ EQM and ε > 0. By hypothesis, there exists δ > 0 such that for every p ∈ Bδ(x)
we have that:

lim sup
n→∞

�n
i=0 d(T

ix, T ip)

n+ 1
<

ε

2
.

Now, let y, z ∈ Bδ(x). We have that:

lim sup
n→∞

�n
i=0 d(T

iy, T iz)

n+ 1

≤ lim sup
n→∞

�n
i=0 d(T

iy, T ix) +
�n

i=0 d(T
ix, T iz)

n+ 1

≤ lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
+ lim sup

n→∞

�n
i=0 d(T

ix, T iz)

n+ 1
< ε.

Therefore x ∈ �
m>0 EQM

1
m

.

⊇: This part is straightforward to show.

By the Baire theorem (see [21]), we have that EQM is dense if and only if it is a residual set.

Lemma 1.13. [22, Proposition 4.2]
Let (X, T ) be a topological dynamical system. The sets EQM and EQM

ε are inversely invariant,
i.e., T−nEQM ⊆ EQM , T−nEQM

ε ⊆ EQM
ε for all n ∈ Z≥0.

Proof. Let x ∈ X with Tx ∈ EQM
ε . Choose δ > 0 satisfying (1.1) from the definition of EQM

ε

for Tx. By the continuity of T , there exists η > 0 such that d(Ty, Tz) < δ for any y, z ∈ Bη(x).
Thus,

lim sup
n→∞

1

n+ 1

n�

i=0

d(T iy, T iz) = lim sup
n→∞

1

n+ 1

n�

i=0

d(T i(Ty), T i(Tz)) < ε.

This implies that x ∈ EQM
ε .

Observe that, for any ε� > ε > 0 we have that EQM
ε ⊆ EQM

ε� . Hence, T
−nEQM

ε ⊆ T−nEQM
ε�

for all n ∈ Z≥0. So, we have that

T−nEQM =
�

m≥0

T−nEQM
2−m ⊆

�

m≥0

EQM
2−m = EQM .

The Akin-Auslander-Berg dichotomy can also be stated for the mean versions of equicontinu-
ity/sensitivity.

Theorem 1.14 (Mean Akin-Auslander-Berg dichotomy [22, 13]). Transitive topological dynami-
cal systems are mean sensitive if only if they are not almost mean equicontinuous.

Proof. Let x ∈ X be a transitive point such that there exists ε > 0 such that for every δ > 0
there is y ∈ Bδ(x) satisfying

lim sup
n→∞

1

n+ 1

n�

i=0

d(T ix, T iy) > ε. (1.2)

9



Fix a non-empty open set U ⊆ X. As x is a transitive point, there exist δ and k ∈ Z+ such
that T kBδ(x) ⊆ U . So, there exists y ∈ Bδ(x) satisfying

lim sup
n→∞

1

n+ 1

n�

i=0

d(T ix, T iy) > ε.

Let z = T kx and z� = T ky. Then z, z� ∈ U and

lim sup
n→∞

1

n+ 1

n�

i=0

d(T iz, T iz�) = lim sup
n→∞

1

n+ 1

n�

i=0

d(T i(T kx), T i(T ky))

= lim sup
n→∞

1

n+ 1

n�

i=0

d(T ix, T iy) > δ.

Therefore, (X, T ) is mean sensitive.
Now, if x is a transitive point but does not satisfies (1.2), then x is a mean equicontinuity

point. So, by the Lemma 1.12, is almost mean equicontinuous.

Mean equicontinuity is very related to measurable dynamics properties which we will not
explore in this theses. While studying these characterizations, a natural stronger property
appeared, diam-mean equicontinuity. We will also study this property on this theses.

Definition 1.15. Let (X, T ) be a TDS.

• We say that x ∈ X is a diam-mean equicontinuity point of (X, T ) if for every ε > 0
there exists δ > 0 such that

lim sup
n→∞

�n
i=1 diam(T iBδ(x))

n
< ε.

We denote the set of diam-mean equicontinuity points of (X, T ) by EQDM .

• The TDS (X, T ) is diam-mean equicontinuous if EQDM = X.

• The TDS (X, T ) almost diam-mean equicontinuous is EQDM is a residual set.

• The TDS (X, T ) is diam-mean sensitive if there exists ε > 0 such that for every open
set U we have

lim sup
n→∞

�n
i=1 diam(T iU)

n
> ε.

The point 0∞ in Example 1.11 is a mean equicontinuity point but it is not a diam mean
equicontinuity point. On the other hand, the Sturmian shift is diam-mean equicontinuous.

The proof of the next lemma is very similar to the proof of Proposition 1.12; it only differs
by some technical changes. However, the proof will be added to make it even clearer.

Lemma 1.16. [13, Lemma 5]
Let (X, T ) be a TDS and ε > 0. Define

EQDM
ε = {x ∈ X : ∃ δ > 0, lim sup

n→∞

�n
i=1 diam(T iBδ(x))

n
< ε}. (1.3)

Then, EQDM
ε is open and EQDM =

�
m>0 EQDM

1
m

. Furthermore,if EQDM is nonempty, then

EQDM is dense if and only if it is a residual set.
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Proof. Let x ∈ EQDM
ε ; that is, there exists δ > 0 such that

lim sup
n→∞

�n
i=1 diam(T iBδ(x))

n
< ε.

Also, for every y ∈ Bδ(x) there exists δ� > 0 satisfying that

lim sup
n→∞

�n
i=1 diam(T iBδ�(y))

n
< ε.

Therefore, EQDM
ε is open.

Next, we show that EQDM =
�

m>0 EQDM
1
m

.

⊆: Let x ∈ EQDM and ε > 0. By hypothesis, there exists δ > 0 such that for every p ∈ Bδ(x)
we have that:

lim sup
n→∞

�n
i=0 d(T

ix, T ip)

n+ 1
<

ε

2
.

Now, let y, z ∈ Bδ(x). We have that:

lim sup
n→∞

�n
i=0 d(T

iy, T iz)

n+ 1

≤ lim sup
n→∞

�n
i=0 d(T

iy, T ix) +
�n

i=0 d(T
ix, T iz)

n+ 1

≤ lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
+ lim sup

n→∞

�n
i=0 d(T

ix, T iz)

n+ 1
< ε.

Therefore x ∈ �
m>0 EQDM

1
m

.

⊇: This part is straightforward to show.

By the Baire theorem, we have that EQDM is dense if and only if it is a residual set.

As the Lemma 1.16 is analogous to the Proposition 1.12, the following lemma is analogous
to Lemma 1.13.

Lemma 1.17. [13, Lemma 46]
Let (X, T ) be a TDS. The sets EQDM and EQDM

ε are inversely invariant, i.e., T−nEQDM ⊆
EQDM , T−nEQDM

ε ⊆ EQDM
ε for all n ∈ Z≥0.

Proof. Let x ∈ X with Tx ∈ EQDM
ε . Choose δ > 0 satisfying (1.3) for Tx. By the continuity of

T , there exists η > 0 such that d(Tx, Ty) < δ for any y ∈ Bη(x). Thus

lim sup
n→∞

1

n

n�

i=1

diam(T iBη(x)) = lim sup
n→∞

1

n

n�

i=1

diam(T iBδ(Tx)) < ε.

This implies that x ∈ EQDM
ε .

Observe that for any ε� > ε > 0 we have that EQDM
ε ⊆ EQDM

ε� . Hence, T−nEQDM
ε ⊆

T−nEQDM
ε� for all n ∈ Z≥0. From this observation, we have that T−nEQDM =

�
m≥0 T

−nEQDM
2−m ⊆�

m≥0 EQDM
2−m = EQDM .

11



Theorem 1.18. [13, Proposition 57]
If (X, T ) is transitive TDS, then it is either almost diam-mean equicontinuous or diam-mean

sensitive.

Proof. Let x ∈ X be a transitive point such that there exists ε > 0 such that every δ > 0:

lim sup
n→∞

�n
i=1 diam(T iBδ(x))

n
> ε. (1.4)

Fix a non-empty open set U ⊆ X. As x is a transitive point, there exist δ > 0 and k ∈ Z+

such that T kBδ(x) ⊆ U . Hence,
T i(T kBδ(x)) ⊆ T iU.

This implies that

lim sup
n→∞

�n
i=1 diam(T iU)

n
> ε

Therefore (X, T ) is diam-mean sensitive.
Now, if x is a transitive point but does not satisfy (1.4), then x is a diam-mean equicontinuity

point. So, by Lemma 1.16, (X, T ) is almost diam-mean equicontinuous.

In summary, we have the following notions which are related with strict implications.

Equicontinuity ⇒ Diam-mean equicontinuity ⇒ Mean equicontinuity;
Mean sensitivity ⇒ Diam-mean sensitivity ⇒ Sensitivity.

Other notions that will be of interest in this work are the following. In the introduction we
talked about “largeness” of the set of all n ∈ N where this “significant separation” happens for a
given region of X. We could have that the complement of this set is finite (cofinitely sensitive).
There are bounded gaps of consecutive entries of the complement occur (syndetically sensitive).
The following definition formulates these notions of sensitivity formally.

Definition 1.19. Let (X, T ) be a TDS. For U ⊂ X and δ > 0, let

NT (U, δ) := {n ∈ N : diam(T nU) > δ}.

• We say that (X, T ) is cofinitely sensitive, if there exists δ > 0 such that for every
nonempty open set U ⊂ X, we have that NT (U, δ) is cofinite; that is: N \NT (U, δ) is finite.

• We say that (X, T ) is syndetically sensitive, if there exists δ > 0 with the property
that for every nonempty open set U ⊂ X, we have that NT (U, δ) is syndetic; that is:
N \NT (U, δ) does not contain arbitrarily large blocks of consecutive integers.

12



Chapter 2

Cellular Automata

In this chapter, we introduce cellular automata (CA). Typically, cellular automata are defined
on a full shift. We give a more general definition. This class of systems are also known as
shift-endomorphisms or sliding block-codes. We use Theorem 2.2 to give an equivalent
definition of CA. We will see that a CA is almost equicontinuous if and only if is not sensitive
(see Proposition 2.8). As you can see transitivity of the CA is not required, but we do need the
CA to commute with a transitive map. In Proposition 2.12 we will show how equicontinuity and
periodicity are related locally.

Definition 2.1. We say that (X, T ) is a cellular automaton (CA) if X is a subshift and
T : X → X is a continuous map such that commutes with σ; i.e., σ ◦ T = T ◦ σ.

Cellular automata can be described using local rules. Note that Txi represents the ith
coordinate of the point Tx.

Theorem 2.2 (Curtis-Hedlund-Lyndon). Let X be a subshift and T : X → X a function. Then,
(X, T ) is a cellular automaton if and only if there exist integers m ≤ a and a (local) function
f : Aa−m+1 → A such that for any x ∈ X and any i ∈ Z

Txi = f(x[i+m,i+a]).

Proof. Let T : X → X be a CA. Let r := max{−m, a}. Since −r ≤ m ≤ a ≤ r, for any n ≥ 0
we have

d(x, y) < 2−n−r ⇒ x[−n−r,n+r] = y[−n−r,n+r] ⇒ x[−n+m,n+a] = y[−n+m,n+a]

⇒ Tx[−n,n] = Ty[−n,n] ⇒ d(Tx, Ty) < 2−n.

So, T is continuous. For any i ∈ Z,

Tσ(x)i = f(σx[i+m,i+a]) = f(x[i+m+1,i+a+1]) = Txi+1 = σ(Tx)i.

So, T commutes with the shift.
Conversely, we assume that T is a continuous map such that commutes with the shift. Since

T is uniformly continuous, for ε = 1 there exists r ≥ 0 such that

d(x, y) < 2−r ⇒ d(Tx, Ty) < 1
x[−r,r] = y[−r,r] ⇒ Tx0 = Ty0.

13



There exists f : A2r+1 → A such that for any x ∈ X, Tx0 = f(x[−r,r]). Since T commutes with
the shift,

Txi = σ(Tx)0 = T (σi(x)[−r,r]) = f(x[i−r,i+r]).

Thus we have a local rule with m = −r and and a = r.

The numbers m, a and r introduced in Theorem 2.2 and its proof are called memory,
anticipation and radius, respectively. Cellular automata defined in {0, 1} and radius r = 1
are called elementary. Their local rules are listed by numbers between 0 and 255 [21].

Example 2.3. The identity (Rule 204)
Let ({0, 1}Z, I), where Ix = x.

Example 2.4. The zero map (Rule 0)
Let ({0, 1}Z, O), where Ox = 0∞.

The reader can check that the previous CA are equicontinuous.

Example 2.5. The traffic CA (Rule 184)
Let ({0, 1}Z, T ) where

Txi = 1 ⇔ x[i−1,i] = 10 or x[i,i+1] = 11.

This CA is sensitive.

Example 2.6. Rule 150
Let A = {0, 1} and T : AZ → AZ given by Txi = mod2(xi−1 + xi + xi+1). Let us represent

0 := and 1 := . Let x ∈ AZ such that x0 = and xi = for all i �= 0. We have that

As we will see this example is permutative (and thus mean sensitive).

Example 2.7. The majority CA (Rule 232)
Let ({0, 1}Z,M), where

Mxi = �xi−1 + xi + xi+1

2
�,

is almost equicontinuous. Notice that 0∞ and 1∞ are equicontinuity points, but (01)∞ is not.

In general, a CA satisfies the Akin-Auslander-Berg dichotomy without assuming transitivity,
as it is proved in [21] for CA on the full shift. Using the same techniques we prove the following
result for CA on transitive subshifts.

Proposition 2.8. Let (X, σ) be a transitive subshift and (X, T ) a CA. Then, (X, T ) is almost
equicontinuous if and only if is not sensitive.

14



Proof. ⇒: Assume that (X, T ) is an almost equicontinuous CA. This means that for every
open subset U ⊆ X, there exists x ∈ U such that for all ε > 0 there exists δ > 0 such that if
d(x, y) < δ, then we have that d(T nx, T ny) < ε for all n ≥ 0.

Let ε > 0. Observe that there exists δ > 0 such that for all y, z ∈ Bδ(x) and all n ≥ 0, we
have that

d(T ny, T nz) ≤ d(T ny, T nx) + d(T nx, T nz)
< ε

2
+ ε

2
= ε.

Therefore, (X, T ) is not sensitive.
⇐: Assume that (X, T ) is not sensitive; i.e., for all ε > 0 there exists an open set U ⊆ X

such that for all x, y ∈ U and for all n ≥ 0, we have that d(T nx, T ny) < ε. Now, since T is
uniformly continuous, for ε = 1, there is r ≥ 0 such that if d(x, y) = 2−r, then d(Tx, Ty) < 1.
This implies that for all x, y ∈ X such that x[−r,r] = y[−r,r], we have that Tx0 = Ty0. Hence, for
all m ≥ 0, there exist d ≥ r and w ∈ A2d+1 such that for all x, y ∈ X with x[−d,d] = w = y[−d,d]

and for all n ≥ 0:
T nx[−m,m] = T ny[−m,m].

Then, there is p ∈ {0, . . . , |w|− r} such that for all x, y ∈ X satisfying x[0,|w|−1] = w = y[0,|w|−1],
we have

T nx[p,p+r−1] = T ny[p,p+r−1]

for all n ∈ N.
For every k ≥ 0 we define the set

Ωk = {x ∈ X : ∃i ≤ −k, x[i,i+|w|−1] = w ∧ ∃j ≥ k, x[j,j+|w|−1] = w}. (2.1)

It is clear that the sets Ωk are open. Furthermore, the transitivity of (X, T ) implies ΩK are
non-empty and dense, for every k ≥ 0. Therefore,

�
k≥0 Ωk is a residual set. We show now that

for every m ≥ 0 there exists km ≥ 0 such that

Ωkm ⊆ EQ2−m .

Notice that for all x, y ∈ Ωk we have:

T nx[i+p,i+p+r−1] = T nx[j+p,j+p+r−1] and T ny[i+p,i+p+r−1] = T ny[j+p,j+p+r−1].

If x[i,j+|w|] = y[i,j+|w|], then for all n ≥ 0 we obtain

T nx[i+p,j+p+r−1] = T ny[i+p,j+p+r−1].

Therefore, for every m ≥ 0, there exists km ≥ 0 sufficiently large such that Ωkm ⊆ EQ2−m . Hence,�
km≥0Ωkm ⊆ �

m≥0 EQ2−m . Thus,
�

m≥0 EQ2−m is a residual set. Since EQ =
�

m≥0 EQ2−m ,
we conclude that (X, T ) is an almost equicontinuous CA.

Example 2.9. Let us define X = {0, 1}Z ∪ {2, 3}Z. Let T : X → X as

Tx =

�
σx if x ∈ {0, 1}Z
x if x ∈ {2, 3}Z,

where σ is the shift function. Every point x ∈ {2, 3}Z is an equicontinuity point. For all
non-empty open set U ⊂ {0, 1}Z there exist x, y ∈ U and n > 0 such that d(T nx, T ny) = 1.
Hence, the CA (X, T ) has equicontinuity points but is not almost equicontinuous.
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A TDS is minimal if every orbit is dense. The Auslander-Yorke dichotomy states that every
minimal TDS is either equicontinuous or sensitive [2]. Now, consider the proof of Proposition
2.8. Note that if (X, σ) is minimal then Ωk = X (see (2.1)). Using this observation we obtain
the following result:

Proposition 2.10. Let (X, σ) be a minimal subshift and (X, T ) a CA. Then, (X, T ) is equicon-
tinuous if and only if is not sensitive.

As we will see equicontinuity is a very strong property on CA because it implies eventual
periodicity on the columns.

Definition 2.11. Let (AZ, T ) be a CA. A point x ∈ AZ is m-locally eventually point of T ,
where m > 0, if T ix[−m,m] is eventually periodic, with respect to i. We call x locally eventually
periodic point if it is m-locally eventually point of T for every m > 0.

Proposition 2.12. Let (AZ, T ) be a CA. Any equicontinuity point in AZ is locally eventually
periodic.

Proof. If the set EQ �= ∅, then (AZ, T ) is almost equicontinuous. Thus, for every ε > 0 exists a
open set U ⊂ AZ such that for all x, y ∈ U and all n ≥ 0, we have that d(T nx, T ny) < ε. Since
(AZ, σ) is transitive, there exists δ > 0 such that if d(x, y) < δ, then d(T nx, T ny) < ε.

Let x ∈ EQ. For all m �= 0, such that δ ≥ 2−m, there exist j > j� ≥ 0 such that
T jx[−m,m] = T j�x[−m,m]. Hence, d(T j+ix, T j�+ix) < δ for all i ≥ 0. So, there exists p ≥ 0 such
that j+p = j�. Then, this implies that T jx[−m�,m�] = T j+px[−m�,m�] = T j�+px[−m�,m�] for all m

� ≥ 0
such that ε ≥ 2−m�

. Therefore, x is locally eventually periodic.

One can easily construct mean sensitive CA using the permutative CA.

Definition 2.13. Let (AZ, T ) be a CA with local rule f : Aa−m+1 → A.

• T is left-permutative if for all u ∈ Aa−m and for all b ∈ A, there exists a unique c ∈ A
such that f(cu) = b.

• T is right-permutative if for all u ∈ Aa−m and for all b ∈ A, there exists a unique c ∈ A
such that f(uc) = b.

• T is permutative if it is either left-permutative or right-permutative.

The next result follows immediately from Definition 2.13.

Lemma 2.14. Let (AZ, T ) be a CA. For each u ∈ Aa−m we define the function fu : A → A as
fu(c) = f(cu) (or fu(c) = f(uc)). If (AZ, T ) is a left-permutative (right-permutative) CA, then
for all u ∈ Aa−m , the function fu : A → A bijective.

Proposition 2.15. If (AZ, T ) is permutative, then for every x ∈ A and for every M > 0 there
exists y ∈ [x[−M,M ]] satisfying:

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
= 1.
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Proof. Let x ∈ AZ and let us assume that (AZ, T ) is right-permutative. We are going to construct
an element y ∈ AZ such that d(T ix, T iy) = 1 for every i ≥ 1. Without losing generality, fix
y(∞,a) = x(∞,a). Then, there exists c1 ∈ A such that c1 �= xa−1 and f(x[m,a−1]c1) �= f(x[m,a]). Fix
y[a,2a−1] = c1x[a+1,2a−1]. Since Tx0 �= Ty0, Lemma 2.14 implies that there exists u ∈ A such that
f(Tx[m,a−1]u) �= f(Tx[m,a]). Then, there exists c2 ∈ A such that f(y[1+m,2a−1]c2) = u. Hence,
T 2x0 �= T 2y0.

Now, let us assume that for some l > 0, there exists (ci)
l
i=1 ⊆ A such that yla = cl,

y[la+1,(l+1)a−1] = x[la+1,(l+1)a−1] and T ix0 �= T iy0 for all 1 ≤ i ≤ l. By Lemma 2.14, we have that
there is u ∈ A such that f(T lx[m,a−1]u) �= f(T lx[m,a]). Since for such l is true, then there exists
cl+1 ∈ A such that y(l+1)a = cl+1, y[(l+1)a+1,(l+2)a−1] = x[(l+1)a+1,(l+2)a−1] and T ix0 �= T iy0 for all
1 ≤ i ≤ l + 1.

Thus, we have that there exists (ci)
∞
i=1 ⊆ A such that yia = ci, y[ia+1,(i+1)a−1] = x[ia+1,(i+1)a−1]

and T ix0 �= T iy0. Therefore,

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
= 1.

The proof for left-permutative CA is analogous.

The proof of the following statement follows directly from Proposition 2.15.

Proposition 2.16. Any permutative CA (AZ, T ) is mean sensitive.

Example 2.17. The sum rule 90
Let ({0, 1}Z, S), where Sxi = mod2(xi−1 + xi+1). We will show a section of the orbit of

x := ∞ ∞.

For this CA, the local rule is as follows:

From the local rule we can see easily that ({0, 1}Z, S) is permutative. Hence, by Proposition
2.16 we have that ({0, 1}Z, S) is mean sensitive. Moreover, by Proposition 2.15, ({0, 1}Z, S) is
cofinitely sensitive.
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Clearly, every almost equicontinuous TDS is almost mean equicontinuous. There exist many
almost mean equicontinuous TDSs that are not almost equicontinuous (see Example 1.11)[22, 15].
However, none of the examples contained in [22, 15] is a CA. We will later construct an almost
mean equicontinuous CA that is not almost equicontinuous.

Definition 2.18. Let S ⊆ Z≥0. We define the upper density of S by

D(S) = lim sup
n→∞

�(S ∩ {0, . . . n− 1})
n

.

Definition 2.19. Let x ∈ X, J ⊂ Z be finite set and n ∈ N. For every y ∈ Bn(x) we define

SJ = {i ∈ N : T iyJ �= T izJ}.

For every pair of integers n, k ∈ N and every x ∈ X we define the set

Sn
k (x,m) = S[−k,k] ∩ [0, n].

In view of Kurka’s dichotomy; it is natural to ask if there is a mean (diam-mean) version of
Theorem 2.8. Later on, we show that this question has a negative answer. First, we will give
a more concrete characterization of mean (diam-mean) equicontinuity on CA. The following
propositions use standard tools to connect density and averages.

Proposition 2.20. Let (X, T ) be a CA and x ∈ X. Then, x is a mean equicontinuity point if
and only if for every m ≥ 0 there exists m� ≥ 0 such that for every y ∈ Bm�(x) satisfies that

D(S{−j,j}) ≤
1

2m+2
,

for all 0 ≤ j ≤ m+ 1.

Proof. ⇒: Let us assume that there exists m ≥ 0 such that for all m� ≥ 0 there exists
y ∈ Bm�(x) such that D(S{−l,l}) >

1
2m+2 for some 0 ≤ l ≤ m+ 1. This implies that

lim sup
n→∞

�n
i=0 d(T

ix, T iy)

n+ 1
≥ lim sup

n→∞

�
i∈S{−l,l}∩[0,n] d(T

ix, T iy)

n+ 1

≥ 1

2l
lim sup
n→∞

�(S{−l,l} ∩ [0, n])

n+ 1

≥ 1

2m+1
D(S{−l,l}) >

1

22m+3
.

Therefore, x is not a mean equicontinuity point.

⇐: Observe that for every k we have that

Sn
k ⊆ Sn

k+1

and

Sn
k+1 \ Sn

k ⊆ S{−(k+1),k+1} ∩ [0, n]
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Now, let us assume that, for every m ≥ 0 there exists m� ≥ 0 such that every y ∈ Bm�(x),
satisfies D(S{−j,j}) ≤ 1

2m+2 , for every 0 ≤ j ≤ m+ 1. Then,

lim sup
n→∞

n�

i=0

d(T ix, T iy)

n+ 1

= lim sup
n→∞

�(Sn
0 ) +

∞�

i=1

1

2i
�(Sn

i \ Sn
i−1)

n+ 1

≤
m+1�

i=0

1

2i
D(S{−i,i}) +

∞�

i=m+2

1

2i
D(S{−i,i})

≤ 1

2m+2

m+1�

i=0

1

2i
+

∞�

i=m+2

1

2i

≤ 1

2m+1
+

1

2m+1
=

1

2m
.

This implies x is a mean equicontinuity point.

Now we will define sensitivity sets on a set of columns.

Definition 2.21. Let J ⊂ Z be finite set and n ∈ N. We define

SDM
J (x, n) = {i ∈ N : ∃ y, z ∈ Bn(x), T

iyJ �= T izJ}.

For every pair of integers n, k ∈ N and every x ∈ X we define the set

Sn
k (x,m) = SDM

[−k,k](x,m) ∩ [0, n].

Proposition 2.22. Let (X, T ) be a CA and x ∈ X. Then x is a diam-mean equicontinuity
point if and only if for every m ≥ 0 there exists m� ≥ 0 such that

D(SDM
{−j,j}(x,m

�)) ≤ 1

2m+2

for all 0 ≤ j ≤ m+ 1.

Proof. ⇒: Suppose there exists m ≥ 0 such that for all m� ≥ 0 there exists l ∈ [0,m+ 1] such
that

D(SDM
{−l,l}(x,m

�)) >
1

2m+1
.

This implies that

lim sup
n→∞

�n
i=0 diam(T iBm�(x))

n+ 1
≥ lim sup

n→∞

�
i∈SDM

{−l,l}(x,m
�)∩[0,n] diam(T iBm�(x))

n+ 1
.

≥ 1

2l
lim sup
n→∞

1

n+ 1
�(SDM

{−l,l}(x,m
�) ∩ [0, n])

≥ 1

2m+1
D(SDM

{−l,l}(x,m
�)) >

1

22m+3
.

Therefore, x is not a diam-mean equicontinuity point.
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⇐: Note that for every k we have that

Sn
k (x,m) ⊆ Sn

k+1(x,m),

and
Sn
k+1(x,m) \ Sn

k (x,m) ⊆ SDM
{−(k+1),k+1}(x,m) ∩ [0, n].

Now, let us assume that for every m ≥ 0 there exists m� ≥ 0 such that

D(SDM
{−j,j}(x,m

�)) ≤ 1

2m+2

for every 0 ≤ j ≤ m+ 1. For sufficiently large m we conclude that

lim sup
n→∞

1

n+ 1

n�

i=0

diam(T iBm�(x))

≤ lim sup
n→∞

1

n+ 1

�
�(Sn

0 (x,m
�)) +

∞�

i=1

1

2i
�(Sn

i (x,m
�) \ Sn

i−1(x,m
�))

�

≤
m+1�

i=0

1

2i
D(SDM

{−i,i}(x,m
�)) +

∞�

i=m+2

1

2i
D(SDM

{−i,i}(x,m
�))

≤ 1

2m+2

m+1�

i=0

1

2i
+

∞�

i=m+2

1

2i

≤ 1

2m
.

This implies x is a diam-mean equicontinuity point.
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Chapter 3

New examples

During this chapter we seek to answer the following questions:

• Is the set of almost equicontinuous CA properly contained in the set of almost diam-mean
equicontinuous CA?

• Is the set of almost diam-mean equicontinuous CA properly contained in the set of almost
mean equicontinuous CA?

• Is there a dichotomy for (diam-)mean sensitivity and (diam-)mean equicontinuity for CA
(similar to Kurka’s dichotomy)?

• Is there a CA that is almost mean equicontinuous and diam-mean sensitive?

Our objective is to construct four examples to answer the questions above. As an additional
result, we have that the example given in Section 3.1 shows the existence of CA that are almost
mean equicontinuous but cofinitely sensitive.

3.1 The Pacman CA

All the results in this section and their proofs are contained in [6]. We respect the order stated
in the cited article within this section.

In this section, we will construct a CA that is almost mean equicontinuous but not almost
equicontinuous. Firstly, we will give the formal definition of the CA, then we will give the
heuristics of the map so the reader gets intuition and, finally, we will approach the result using a
series of technical lemmas. We remind the reader that Txi represents the ith coordinate of the
point Tx.
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Let A = { , , , , , }. We define the function T : AZ → AZ locally as follows

Txi =





if (xi−1 ∈ { , , } ∧ [(xi ∈ { , , } ∧ xi+1 ∈ { , , })
∨(xi = ∧ xi+1 /∈ { , })])
∨(xi−1 ∈ { , } ∧ [(xi ∈ { , } ∧ xi+1 ∈ { , , })
∨(xi = ∧ xi+1 /∈ { , })]),

if xi ∈ { , } ∧ xi+1 /∈ { , },
if (xi−1 ∈ { , , } ∧ xi ∈ { , , } ∧ xi+1 ∈ { , })

∨(xi−1 ∈ { , } ∧ xi ∈ { , } ∧ xi+1 = ),
if (xi+1 = ∧ [(xi−1 ∈ { , , } ∧ xi ∈ { , , })

∨(xi−1 ∈ { , } ∧ xi ∈ { , })])
∨(xi−1 = ∧ xi /∈ { , } ∧ xi+1 ∈ { , })
∨(xi = ∧ xi+1 ∈ { , }),

if (xi−1 = ∧ [(xi ∈ { , } ∧ xi+1 = ) ∨ xi = ])
∨(xi−1 = ∧ xi, xi+1 /∈ { , }), and

if xi ∈ { , } ∧ xi+1 ∈ { , }.

We call this CA the Pacman cellular automaton. Notice that this CA has memory and
anticipation 1. We will call the members of the alphabet A as follows:

• empty space,

• empty door,

• pacman,

• ghost.

• keymaster ghost, and

• door with ghost.

We will now explain the heuristics of this map so the reader gets intuition on the dynamics. The
reader does not need to know the rules of the game Pacman. It is only needed to understand
that pacmans eat blue ghosts.

• A door always stays fixed in the same place (a ghost might cross it); that is, xi ∈ { , }
if and only if Txi ∈ { , }.

• Pacmans move to right (one position per unit of time) if there is no door; that is, if
xi = and xi+1, xi+2 /∈ { , } then Txi+1 = .

• If a pacman encounters a door (on the right) it is transformed into keymaster ghost ;
that is, if xi = and xj ∈ { , } with j ∈ {i+ 1, i+ 2} then Txj−1 = .

• Ghosts ( , ) always move to the left (one position per unit of time) if there is no
pacman or a door on the left; that is, if xi = (xi = ), xi−1 ∈ { , , } and
xi−2 ∈ { , , }(xi−2 �= ), then Txi−1 = (Txi−1 = ).

• If a ghost or keymaster ghost encounters a pacman (on the left) it will disappear (get
eaten); that is,

– if xi ∈ { , } and xi−1 = , then Txi−1 /∈ { , }; and
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– if xi ∈ { , }, xi−2 = and xi−1 /∈ { , }, then Txi−1 = .

• If a ghost encounters a door it transforms into a pacman; that is,

– if xi = and xi−1 ∈ { , }, then Txi = ; and

– if xi = , xi−2 = { , } and xi−1 /∈ { , , }, then Txi−1 = .

• If a keymaster ghost encounters a door he will enter the door, lose its key, and (in the
following step) proceed to the left; that is, if xi = and xi−1 ∈ { , }, then Txi−1 =
and

– if xi−3 = , then T 2xi−2 = and

– if xi−3 = , then T 2xi−2 = .

When describing a point x in AZ we will use a point (.) to indicate the 0th coordinate of x. For
example, if x = ∞ . ∞ then x0 = and xi = for every i �= 0. We will now provide some
examples on how the Pacman CA works. Notice that time flows downward on the diagrams.

Example 3.1. Letm ≥ 2 and w = m . Let us show a section of the orbit of x :=∞ .w ∞.
In this example, we can observe that the space between two doors is acting like a some sort of
“filter”, because many ghosts disappear.
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Example 3.2. Let w = . We show a section of the orbit of x = ∞ .w ∞.

We now prove a series of technical lemmas. If there is one to the right of a pattern with
empty spaces and empty doors, then will “cross” all the doors eventually. We state this fact
formally in the next lemma.

Lemma 3.3. Let m ≥ 1, w ∈ { , }m such that w0 = = wm−1 and wi = for all
0 < i < m− 1. Set x =∞ .w ∞. Then, there exists N > 0 such that TNx[0,m−1] = w.

Proof. Assume that m ≥ 4. From the definition of T we have the followings implications:

• Txm−1 = ∧ Txi ∈ { , } ∀ i �= m− 1,

• Tm−jxj = for 1 < j < m− 1 ∧ Tm−jxi ∈ { , } ∀ i �= j,

• Tm−2+jxj = for 1 ≤ j < m− 2 ∧ Tm−2+jxi ∈ { , } ∀ i �= j,

• T 3m−6−jxj = for 1 ≤ j ≤ m− 2 ∧ T 3m−6−jxi ∈ { , } ∀ i �= j,

• T 3m−6x0 = ∧ T 3m−6xi ∈ { , } ∀ i �= 0.

Then, for N = 3m − 5, we have that TNx[0,m−1] = w. The case when 1 ≤ m ≤ 3 is easy to
check.

One thing to notice about Examples 3.1 and 3.2 is that stays fixed in the same place.

Remark 3.4. Note that if xi = and xi+1 = then Txi = .

Using Remark 3.4 and Lemma 3.3 we obtain the following:

Lemma 3.5. Let m > 0, w ∈ Am and x =∞ .w ∞. There exists N > 0 such that for all
n ≥ N ,

T nxi ∈ { , } ∀ i ≥ 0.

In the proof of Lemma 3.3 we describe the “trajectory” of from the start until it crosses
the doors. In the following lemma, we describe a similar trajectory, but this time we are going
to do it backwards in time.

Lemma 3.6. Let m ≥ 2, v ∈ AN and x := ∞ . m v. If N ≥ 3m and TNx0 = , then
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• TN−3m+1xm+1 = ,

• TN−2(m−1)−jxj = for 2 ≤ j ≤ m,

• TN−m−jxm−j = for 1 ≤ j ≤ m− 1, and

• TN−jxj = for 1 ≤ j ≤ m.

Proof. Assume the hypothesis of the lemma. By checking the rules of T we can see that if
TNx0 = and x1 �= then necessarily TN−1x1 = . We can go back step by step to obtain
the result.

Using Lemma 3.6, we will see, that if TNx0 = = TN �
x0 then N and N � cannot be near.

Lemma 3.7. Let m ≥ 0, v ∈ AN, and x := ∞ . m v. If N � > N ≥ 3m are such that
TNx0 = = TN �

x0, then:

• if 0 ≤ m ≤ 1, then N � −N > 2m; and

• if m ≥ 2, then N � −N ≥ 2m− 1.

Proof. The case 0 ≤ m ≤ 1 is straightforward to check.

Let m ≥ 2, and N � > N ≥ 3m such that TNx0 = = TN �
x0. Assume that N �−N < 2m−1.

From Lemma 3.6 we have that:

• TN−jxj = for 1 ≤ j ≤ m and

• TN �−m−j�xm−j� = for 1 ≤ j� ≤ m− 1.

First, suppose that N � −N is even. Let j = m− N �−N
2

and j� = N �−N
2

. By the assumption on
N,N � and m it follows that 1 ≤ j ≤ m, 1 ≤ j� ≤ m− 1, and

TN−jxj = TN �−m−j�xm−j ;

a clear contradiction.
Now suppose N � −N is odd. Let j = m− �N �−N

2
� and j� = �N �−N

2
�. By the assumption on

N,N � and m it follows that 1 ≤ j ≤ m, 1 ≤ j� ≤ m− 1,

TN−jxj = , and TN �−m−j�xm−j� = .

Therefore,
TN−jx[j,j+1] = ;

which is also a contradiction because is not on the image of T .

In Example 3.1, we see that considering an infinite right-tail of keymater ghosts, some get
eaten and some cross the doors. It is natural to ask what will be the frequency of that cross
a doors. The next lemma answers this question.

Lemma 3.8. Let w = m , with m ≥ 0 and x =∞ .w ∞.
If 0 ≤ m ≤ 1, then
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• T 3m−2x0 = ,

• T 3m−2+(2m+1)kx0 = for k ≥ 0, and

• T ix0 = , for all 3m− 2 + (2m+ 1)k < i < 3m− 2 + (2m+ 1)(k + 1) and k ≥ 0.

If m ≥ 2, then

• T 3mx0 = ,

• T 3m+(2m−1)kx0 = for k ≥ 0, and

• T ix0 = , for all 3m+ (2m− 1)k < i < 3m+ (2m− 1)(k + 1) and k ≥ 0.

Proof. The proof for 0 ≤ m ≤ 1 is similar to the proof when m ≥ 2. So, we are only going to
prove the result when m ≥ 2. Using a similar argument of the proof of Lemma 3.3, we obtain
that T 3mx0 = and T ix0 = for all 0 < i < 3m. Also, we have that T 2m−1xm+2 = . Hence,
T 5m−1x0 = .

We will proceed by induction on k. Let us assume that

T 3m+(2m−1)lx0 = .

Next, let k = l + 1. By the induction hypothesis, we have that

T 2m−1+(2m−1)lx(m+2) = .

Hence, T 5m−1+(2m−1)lx0 = . Doing simple calculations we obtain

T 3m+(2m−1)(l+1)x0 = .

The proof of T ix0 = , for all 3m + (2m − 1)k < i < 3m + (2m − 1)(k + 1) and k ≥ 0,
follows immediately from Lemma 3.7.

We will now prove that the set of equicontinuity points of the Pacman CA is empty.

Proposition 3.9. Let m ≥ 1 and w ∈ Am. Then, there exist x, y ∈ AZ such that

x[0,m−1] = w = y[0,m−1]

and the set
S = {i ∈ Z≥0 : T

ix0 �= T iy0}
is infinite.

Proof. Let m ≥ 1, w ∈ Am and x =∞ .w ∞. Lemma 3.5 says that there exists N > 0 such
that T nx0 ∈ { , } for every n ≥ N . Let y =∞ .w ∞. By Lemma 3.8, the the set S is
infinite.

Lemma 3.8 tells us the exact frequency of crossing doors when a ponit x has a tail ∞ to
the right. If we do not have precise information on what is in the right, we may not have the
exact frequency as in the Lemma 3.8. However, using Lemma 3.7, we will be able to obtain an
upper bound.

Now we will explore a similar situation but with finitely many doors.
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Lemma 3.10. Let {di}ni=0 a finite set of non-negative integers, v ∈ AN,

w = d0 d1 · · · dn ,

x = ∞ .wv, and 0 ≤ j < n+
�n−1

i=0 di. Assume that TNxj = = TN �
xj for some N,N � ≥ 0.

We have that

• if 0 ≤ dn ≤ 1, then |N −N �| > 2dn, and

• if dn ≥ 2, then |N −N �| > 2(dn − 1).

Proof. The case where n = 0 is a direct application of Lemma 3.7. We will prove the other case
by induction. Assume that for n = p the result holds. Now, let n = p+ 1 . By the induction
hypothesis, we have that if xj = , for all 1 ≤ j ≤ p+ 1 +

�p
i=0 di, and TNxj = = TN �

xj for
all N,N � ≥ 0 then:

if dp+1 ≥ 2 then |N −N �| ≥ 2(dp+1 − 1) or
if 0 ≤ dp+1 ≤ 1 then |N −N �| ≥ 2dp+1.

Hence, the only thing left to show is that, for x0 = and for all N,N � ≥ 0 such that
TNx0 = = TN �

x0 we have that:

if dp+1 ≥ 2 then |N −N �| ≥ 2(dp+1 − 1) or
if 0 ≤ dp+1 ≤ 1 then |N −N �| ≥ 2dp+1.

For 0 ≤ dp+1 ≤ 1 the result is easy to check. So, let us assume that dp+1 ≥ 2. Also, let us
assume that there exist N,N � ≥ 0 such that TNx0 = = TN �

x0. This means that there exist
N0, N

�
0 ≥ 0 such that TN0xd0+1 = = TN �

0xd0+1 and N �
0 + r = N � and N0 + r = N . Therefore,

2(dp+1 − 1) ≤ |N � −N |.

For Lemma 3.11 it will be useful to consider the CA as a (vanishing) particle system, where
ghosts and pacmans are particles.

We define the particle function γ : AZ → { , }Z as

γ(x)i =

�
if xi ∈ { , },
if xi ∈ { , , , },

where x ∈ AZ and i ∈ Z. Observe that with this function the Examples 3.1 and 3.2 turn out as
follows:
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⇒

⇒

We can compare the density by columns for two different points in AZ.

Lemma 3.11. Let d > 0, w = d , x :=∞ .w ∞, v ∈ AN, and y =∞ .wv. If 1 ≤ i ≤ d,
then

3D(S{d+1}) ≥ D(S{i}).

Proof. Using the Pacman CA and the particle function, we can define a trajectory function
of an specific particle (a ghost/pacman) p. We will not construct this function explicitly, but
we will give its properties. Given a point x ∈ X and a particle of that point; that is, p ∈ Z
with γ(x)p = , we can define trajectory of that particle (all the way to the infinity or until
it disappears). This trajectory is a function τp : N → Z where N ⊂ N is the lifespan of the
particle (i.e. N = N if it never disappears), τp(0) = p and τp(n) the position at time n. We
have that |τp(n)− τp(n+ 1)| ≤ 1 for n+ 1 ∈ N . Using the properties of T it is not hard to see
that for every z ∈ Z we have that |τ−1

p (z)| ≤ 3; that is, a particle can only be at most three
times on a particular position. By Lemma 3.5, there exists N > 0 such that, if for some l > 0,
TN+lyi /∈ { , }, then there exists a unique k ≥ |w|, such that γ(y)k = and τk(N + l) = i.
Hence, for all n ∈ S+i, there exist a unique kn ≥ |w| and m < n such that τkn(n) = i and
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τkn(m) = d + 1. Since yd+1 = , then |τ−1
kn

(d + 1)| = 1. Define P := {z ∈ Z : γ(y)z = }.
Therefore,

lim supn→∞
3�[(

�
z∈P τ−1

z (d+1))∩[0,n]]
n+1

≥ lim supn→∞
�[(

�
z∈P τ−1

z (i))∩[0,n]]
n+1

. (3.1)

Since γ(x)z = for all z ∈ Z, we have that

�

z∈P
τ−1
z (i) = S{i} and

�

z∈P
τ−1
z (d+ 1) = S{d+1}.

Therefore, from (3.1), we conclude that

3D(S{d+1}) ≥ D(S{i}).

Notice that we know how ghosts behave between doors, how long it takes them to cross
two walls, and how to compare column densities for two given elements in AZ. Using these
information, we can construct an equicontinuity point for the Pacman CA.

Proposition 3.12. Let x = · · · 22 21 20 . 20 21 22 · · · . Then, x is a mean
equicontinuity point.

Proof. We divide the proof in two parts:
Part 1: Let m ≥ 0, m� = m+ 3 +

�m+3
l=0 2l, and y ∈ X with

y[−k,k] =
2m+3 · · · 22 21 20 . 20 21 22 · · · 2m+3

,

for a certain k. By Lemma 3.10, we have that, if xj = , where 0 ≤ j ≤ m+ 3 +
�m+2

l=0 2l, then
for all N,N � ≥ 0 such that TNyj = = TN �

yj, satisfies |N −N �| ≥ 2(2m+3 − 1). Now,

lim sup
n→∞

�(S{−j,j} ∩ [0, n])

n+ 1
≤ lim sup

n→n

�(S{j} ∩ [0, n])

n+ 1
+ lim sup

n→n

�(S{−j} ∩ [0, n])

n+ 1
.

Define N0 = minS{j}. Observe that
�(S{j}∩[0,N0])

N0+1
= 1

N0+1
. Let N1 = minS{j} \ {N0}. We have

that
�(S{j}∩[0,N1])

N1+1
= 2

N1+1
< 2

N0+2(2m+3−1)+1
. Following this construction, for every r ≥ 1, we

define Nr = min(S{j} \ {Nl}r−1
l=0 ). Observe that

�(S{j}∩[0,Nr])

Nr+1
= r+1

Nr+1

< r+1
r(2m+4−2+ 1

r
)
.

Since

lim
r→∞

r + 1

r

1

2m+4 − 2 + 1
r

=
1

2m+4 − 2
,

then

lim
r→∞

�(S{j} ∩ [0, Nr])

Nr + 1
≤ 1

2(2m+3 − 1)
<

1

2m+3
.
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Similarly, we obtain

lim
r→∞

�(S{−j} ∩ [0, Nr])

Nr + 1
<

1

2m+3
.

Thus,

lim
r→∞

�(S{−j,j} ∩ [0, Nr])

Nr + 1
≤ 1

2m+2
.

Part 2: By Lemma 3.11 and Part 1, we have that for all j ∈ Z with xj = , and

−(m+ 2 +
m+2�

l=0

2l) ≤ j ≤ m+ 2 +
m+2�

l=0

2l,

then
3D(S{−d,d}) ≥ D(S{−j,j}),

where d = m + 3 +
�m+2

l=0 2l. Since D(S{−d,d}) ≤ 1
3

1
2m+2 , then D(S{−j,j}) ≤ 1

2m+2 . Therefore,
Proposition 2.20 gives us that x is a mean equicontinuity point.

In the following statement, we state that the set of equicontinuity points is dense. The proof
of Lemma 3.13 is very similar to the proof of Proposition 3.12.

Lemma 3.13. Let m > 0, w ∈ Am and

x := · · · 22 21 20 .w 20 21 22 · · · .

We have that x is a mean equicontinuity point.

We now present the main theorem of this section which states that the set of almost
equicontinuous CA is properly contained in the set of almost mean equicontinuous CA.

Theorem 3.14. (AZ, T ) has no equicontinuity points (hence is not almost equicontinuous).
However, it is almost mean equicontinuous.

Proof. The first statement follows immediately from Proposition 3.9.

Now, let x ∈ AZ, m ≥ 0, and w = x[0,m]. We set

y := · · · 22 21 20 .w 20 21 22 · · · .

From Lemma 3.13, we conclude that y is a mean equicontinuity point. Therefore, (AZ, T ) is
almost mean equicontinuous.

3.2 The Pacman level 2 CA

Let A = { , , , , , }, A2 = { , , } and T : AZ → AZ the Pacman CA of Section
3.1. We define T2 : A

Z
2 → AZ

2 as

T2xi =





if xi = ;
if xi = ;
if xi = .
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Now we will define some sort of skew product (see Example ??). We define AP := A× A2, and
the map TP : AZ

P → AZ
P as

TPxi =

�
(Txi, T2xi) if xi /∈ {( , ), ( , ), ( , )};
(Txi, ) if xi ∈ {( , ), ( , ), ( , )}.

The following result is almost identical to Lemma 3.5; in fact, its proof follows immediately
from Lemma 3.5.

Lemma 3.15. Let m > 0, w ∈ Am
P , and

x = ∞( , ).w( , )( , )∞.

Then, there exists N > 0 such that for all n ≥ N and all 0 ≤ i ≤ |w|,

T n
Pxi ∈ {(p, q) : p ∈ { , } ∧ q ∈ A2}.

We want to show that (AZ
P , TP ) is not almost mean equicontinuous. Using Proposition 1.12,

we need to find a non-empty open set that does not contain any mean equicontinuity points.

Lemma 3.16. Let m > 0 and w ∈ Am
P such that w0 = ( , ). Then, there exist x, y ∈ AZ

P such
that

x[0,|w|−1] = y[0,|w|−1] = w

and the set
Zn≥0 \ {n ∈ Zn≥0 : T

n
Px0 �= T n

P y0}
is finite.

Proof. Let w ∈ Am
P as in the hypothesis of the statement. Let us define

x := ∞( , ).w( , )( , )( , )∞

and
y := ∞( , ).w( , )( , )∞.

Using Lemma 3.15, we can assume, without loss of generality, that wi ∈ {(p, q) : p ∈ { , }∧q ∈
A2}. Now, there exists N > 0 such that TN

P x0 = ( , q), where q ∈ { , }. Meanwhile, for all
i ≥ 0, we have that T i

Py0 = ( , q) with q ∈ { , }. We have two cases to prove.

Case 1: TN
P x0 = ( , ).

This implies that TN+1
P x0 = ( , ). Meanwhile, TN+1

P y0 = ( , ). Therefore, we can
easily see that TN+i

P x0 �= TN+i
P y0, for all i > 0.

Case 2: TN
P x = ( , ).

Again, we have that TN+1
P x0 = ( , ). So, TN+i

P x0 = TN+i
P y0 for all i ≥ 0. In this case,

we redefine
x := ∞( , ).w( , )( , )( , )( , )∞

and we finish the proof using a similar argument as the one given in Case 1.
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The following statement follows immediately from Lemma 3.16.

Lemma 3.17. Let x ∈ AZ
P such that x0 = ( , ). Then, x is not a mean equicontinuity point.

Notice that, for all ε > 0, any y ∈ Bε(x), where x0 = ( , ), is not a mean equicontinuity
point.

Theorem 3.18. (AZ
P , TP ) is neither mean sensitive nor almost mean equicontinuous.

Proof. Let us show that (AZ
P , TP ) is not mean sensitive, i.e., for every ε > 0 there exists a open

set U ⊂ AZ
P such that for every x, y ∈ U

lim sup
n→∞

�n
i=0 d(T

i
Px, T

i
Py)

n+ 1
< ε.

From Proposition 3.13,

x := · · · ( , )( , )2
1

( , )( , )2
0

.( , )( , )2
0

( , )( , )2
1 · · ·

is a mean equicontinuity point. From Proposition 1.12, for every ε > 0, there exists δ > 0 such
that for all y, z ∈ Bδ(x)

lim sup
n→∞

�n
i=0 d(T

i
Py, T

i
P z)

n+ 1
< ε.

Therefore, (AZ
P , TP ) is not mean sensitive.

The fact that (AZ
P , TP ) is not almost mean equicontinuous follows immediately from Lemma

3.17.

Naturally, this example cannot be a transitive CA.

3.3 Almost diam-mean equicontinuity 1

All the results in this section and their proofs are contained in [4].
The strongest form of diameter sensitivity is called cofinitely sensitivity (see Definition

1.19)[25]. It is easy to see that every cofinitely sensitive TDS is diam-mean sensitive.

In the proof of Lemma 3.3, we know exactly when a ghost crosses two doors in N iterations.
So, it is clear that, if we move the ghost one place to the right it will take N + 1 iterations. To
generalize this idea we show the following:

Lemma 3.19. Let (X, T ) be the Pacman CA and w ∈ A+ a finite word. We define the points

xi = ∞ .w i ∞.

Then, there exist N,M ≥ 0 such that for every j ∈ Z≥0 we have that TN+jxM+j
0 ∈ { , , }.

Proof. First assume that w ∈ { , }+. By simple application of the rules of the Pacman
CA we can conclude that there exists N0 ≥ 0 such that TN0x1

0 ∈ { , , }. Furthermore,
since Txi = xi−1 we obtain the result for M = 0; that is, for every j ∈ Z≥0 we have that
TN0+jxj

0 ∈ { , , }.
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For the general case, let w ∈ Am and x = ∞ .w ∞. Lemma 3.5 implies that there exists
M � > 0 such that

TM �
xi ∈ { , } ∀ i ≥ 0.

Since points yi := TM �
xM �+i look exactly like the cases presented on the first part of the

proof, we conclude that there exist N,M ≥ 0 such that for every j ∈ Z≥0 we have that
TN+jxM+j

0 ∈ { , , }.

With the help of Lemma 3.19, we can construct a sequence of elements in any open set that
will help us to show that the Pacman CA is cofinitely sensitive.

Proposition 3.20. The Pacman CA is cofinitely sensitive.

Proof. Let w be a finite word and let x ∈ [w]0 such that x = ∞ .w ∞. Let (yi)∞i=0 ⊂ [w]0
such that

yi = ∞ .w i ∞.

By Lemma 3.5, there exists M ≥ 0 such that for all n ≥ M we have that

T n ∈ { , } ∀ i ≥ 0.

Hence, by Lemma 3.19, there exists N ≥ 0 such that

d(TN+jx, TN+jyM+j) = 1

for all j ≥ 0. Therefore, the Pacman CA is cofinitely sensitive.

Using a similar strategy, it can be shown that the Pacman Level 2 CA is also cofinitely
sensitive.

3.4 Shift-odometer example

The results of this section appeared in [5].
In this section, we will construct an almost diam-mean equicontinuous CA that is not almost

equicontinuous.
First, we define a CA that resembles an odometer (compare with Example 1.6). Let

A1 = { }∪Z3 = { , 0 , 1 , 2 }. We define the CA T1 : A
Z
1 → AZ

1 locally as follows: T1xi =
if and only if xi = , otherwise T1xi ∈ {xi, (xi + 1)mod3}, with T1xi = (xi + 1)mod3 if and only
if xi+1 ∈ { , 2 }. In other words:

T1xi =





if xi =

0 if (xi = 2 ∧ xi+1 ∈ { , 2 })∨
(xi = 0 ∧ xi+1 ∈ A1 \ { , 2 });

1 if (xi = 0 ∧ xi+1 ∈ { , 2 })∨
(xi = 1 ∧ xi+1 ∈ A1 \ { , 2 });

2 if xi = 1 ∧ xi+1 ∈ { , 2 })∨
(xi = 2 ∧ xi+1 ∈ A1 \ { , 2 }).

The following example will help us to understand (AZ
1 , T1). Also, it helps us to see why

(AZ
1 , T1), to some extent, resembles an odometer (see Example 1.6).
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Example 3.21. Let x ∈ AZ
1 such that x[0,5] = 0 0 0 0 . We have that

T 0
1 x[0,5] = 0 0 0 0 T 14

1 x[0,5] = 1 0 1 2

T 1
1 x[0,5] = 0 0 0 1 T 15

1 x[0,5] = 1 0 2 0

T 2
1 x[0,5] = 0 0 0 2 T 16

1 x[0,5] = 1 1 2 1

T 3
1 x[0,5] = 0 0 1 0 T 17

1 x[0,5] = 1 2 2 2

T 4
1 x[0,5] = 0 0 1 1 T 18

1 x[0,5] = 2 0 0 0

T 5
1 x[0,5] = 0 0 1 2 T 19

1 x[0,5] = 2 0 0 1

T 6
1 x[0,5] = 0 0 2 0 T 20

1 x[0,5] = 2 0 0 2

T 7
1 x[0,5] = 0 1 2 1 T 21

1 x[0,5] = 2 0 1 0

T 8
1 x[0,5] = 0 2 2 2 T 22

1 x[0,5] = 2 0 1 1

T 9
1 x[0,5] = 1 0 0 0 T 23

1 x[0,5] = 2 0 1 2

T 10
1 x[0,5] = 1 0 0 1 T 24

1 x[0,5] = 2 0 2 0

T 11
1 x[0,5] = 1 0 0 2 T 25

1 x[0,5] = 2 1 2 1

T 12
1 x[0,5] = 1 0 1 0 T 26

1 x[0,5] = 2 2 2 2

T 13
1 x[0,5] = 1 0 1 1 T 27

1 x[0,5] = 0 0 0 0 .

Now that we have looked at Example 3.31, we can see that “empty” remains fixed and is not
influenced by any of its neighbors; a difference from the odometer. In addition, the following
remarks add observations that are easy to verify.

Remark 3.22. Note that the CA T1 has anticipation 1 and memory 0; that is, T1x0 only
depends on x0 and x1. Hence, if xi = yi+N for every i ≤ 1 then T1xi = T1yi+N for every i ≤ 0.

Remark 3.23. It is not difficult to see that T1 is almost equicontinuous. In fact, is a blocking
word, i.e., if x, y ∈ AZ

1 with x[m�,m] = y[m�,m] and xm = , then T n
1 x[m�,m] = T n

1 y[m�,m] for every
n > 0. Moreover, in this situation, one can check that there exist M > 0 and p > 0 such that
TM+ip
1 x[m�,m] = TM

1 x[m�,m] for all i ≥ 0.

Given a CA (X, T ), we say a point x ∈ X is periodic with period p if T px = x. This should
not be confused with the statement, T nx0 is periodic, which means that the sequence with
respect to n is periodic. We will now state some statements that help us to understand the
behavior of T1.

Lemma 3.24. Let x := ∞ . 0 ∞. Then x is a periodic point with period 3.

Proof. Observe that T1xi = if and only if xi = . Hence,

• T1x0 = 1 and T1xi = for all i ∈ Z \ {0};

• T 2
1 x0 = 2 and T 2

1 xi = for all i ∈ Z \ {0}; and

• T 3
1 x0 = 0 and T 3

1 xi = for all i ∈ Z \ {0}.

Therefore, x is a periodic point with period 3.

The following lemma shows that, if we start adding 0 to x we can change its periodicity;
although this does not necessarily have to happen as we will see in Lemma 3.27.
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Lemma 3.25. Let x := ∞ . 0 0 ∞. Then x is a periodic point with period 9.

Proof. Remark 3.23 and Lemma 3.24 implies that T 3k
1 x1 = 1 and T 3k

1 xi = for all i ∈ Z \ {0, 1}
and for all k ∈ Z≥0. Thus, we have that:

• T 3
1 x[0,1] = 1 0 and T 3

1 xi = for all i ∈ Z \ {0, 1};

• T 6
1 x[0,1] = 2 0 and T 6

1 xi = for all i ∈ Z \ {0, 1};

• T 9
1 x[0,1] = 0 0 and T 9

1 xi = for all i ∈ Z \ {0, 1}. Therefore, x is a periodic point with
period 9.

From the proof of Lemma 3.25, we can conclude the next result. Although the following
lemma seems redundant because it is very similar to Lemma 3.25, it helps us to see what exactly
happens at the 0th coordinate of x.

Lemma 3.26. If x := ∞ . 0 0 ∞, then

1. T i
1x0 = 0 for all 0 ≤ i ≤ 2;

2. T i
1x0 = 1 for all 3 ≤ i ≤ 5;

3. T i
1x0 = 2 for all 6 ≤ i ≤ 8.

As we mentioned before, something to be careful about is that the period does not necessarily
increase if the amount of 0 s increases (one of the differences with an odometer). The following
result is an evidence of the previous comment.

Lemma 3.27. Let y := ∞ . 0 0 0 ∞. Then x and y are periodic points with period 9.

Proof. By Lemmas 3.25 and 3.26 we have that

T i
1y0 = 0 ,

for all 0 ≤ i ≤ 6. Observe that
T 6+i
1 y0 = T i

1y2,

for all 0 ≤ i ≤ 3. Hence, T 9
1 y[0,2] = 0 0 0 and T 9

1 yi = for all i ∈ Z \ {0, 1, 2}.

Since the periodicity of x changes if it has one or two 0 ’s while the periodicity is the same

when it has two or three 0 ’s, it would be nice to determine exactly how many 0 ’s it takes to
change the periodicity and when it is preserved. In other words, we want to generalize Lemmas
3.24 to 3.27. For that endeavor, we need the following result, which gives us some conditions for
when we want the first n iterations, of two close points of (AZ

1 , T1), to stay close.

Lemma 3.28. Let m, k > 0, and x, y ∈ AZ
1 such that x[0,k] = y[0,k], and {T i

1xk+1, T
i
1yk+1} ⊂

{ , 2 } for every i ∈ [0, m]. Then T i
1x[0,k] = T i

1y[0,k] for every i ∈ [0, m].

Proof. The proof can be obtained using Remark 3.22, the shift commuting property of a CA,
and the fact that if x�, y� satisfies that x�

0 = y�0 and {x�
1, y

�
1} ⊂ { , 2 }, then T1x

�
0 = T1y

�
0.
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The following proposition gives the desired generalization of Lemmas 3.24 to 3.27.

Proposition 3.29. Let l ≥ 1, 1 ≤ j < 2l, xl := ∞ . 0
2l ∞ and yl,j := ∞ . 0

2l+j ∞.
Then:

1. xl and yl,j are periodic points with period 3l+1.

2. We have that:

• T i
1x

l
0 = 0 for all 0 ≤ i < 3l;

• T i
1x

l
0 = 1 for all 3l ≤ i < 2(3l);

• T i
1x

l
0 = 2 for all 2(3l) ≤ i < 3l+1.

Proof. Let us shows part 2 firstly, we will prove the result by induction on l. From Lemma 3.27,
we obtain the result for l = 1. Assume the result holds for l = k. Now, let l = k + 1. By the
induction hypothesis and Remark 3.23 we have:

• T i
1x

k+1
2k

= 0 for all 0 ≤ i < 3k;

• T i
1x

k+1
2k

= 1 for all 3k ≤ i < 2(3k);

• T i
1x

k+1
2k

= 2 for all 2(3k) ≤ i < 3k+1.

Hence, we have that T i
1x

k+1
[0,2k)

= 0
2k

for all 0 ≤ i ≤ 2(3k). Observe that

T
2(3k)
1 xk+1

[0,2k]
= 0

2k

2 and xk+1
[2k,2k+1]

= 0
2k

.

Using Lemma 3.28 and the fact that T1 commutes with the shift, we obtain that

T
2(3k)+i
1 xk+1

[0,2k)
= T i

1x
k+1
[2k,2k+1)

,

for all 0 ≤ i < 3k. This implies that T i
1x

k+1
0 = 0 for all 0 ≤ i < 3k+1.

By the induction hypothesis we have that yk,2
k−1 = ∞ . 0

2k+1−1 ∞ has period 3k+1. Since

xk+1
(0,2k+1]

= yk,2
k−1

[0,2k+1−1]
, Remark 3.23 gives us that

T 3k+1

1 xk+1
(0,2k+1]

= xk+1
(0,2k+1]

= 0
2k+1−1

.

Thus,

T 3k+1−1
1 xk+1

[0,2k+1]
= 0 2

2k+1−1
, and

T 3k+1

1 xk+1
[0,2k+1]

= 1 0
2k+1−1

.

By this, and a similar use of the induction hypothesis, we obtain that

• T 3k+1+i
1 xk+1

2k
= 0 for all 0 ≤ i < 3k;

• T 3k+1+i
1 xk+1

2k
= 1 for all 3k ≤ i < 2(3k);
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• T 3k+1+i
1 xk+1

2k
= 2 for all 2(3k) ≤ i < 3k+1.

Then, T 3k+1+i
1 xk+1

[0,2k)
= 1 0

2k−1
for all 0 ≤ i ≤ 2(3k). So, using Lemma 3.28 and the fact that

T1 commutes with the shift, we have that

T 3k+1+i
1 xk+1

[0,2k)
= T i

1x
k+1
[2k,2k+1)

for all 2(3k) ≤ i < 3k+1. Therefore, T i
1x

k+1
0 = 1 for all 3k+1 ≤ i < 2(3k+1). In a similar way, we

have that T i
1x

k+1
0 = 2 for all 2(3k+1) ≤ i < 3k+2. Hence,

• T i
1x

k+1
0 = 0 for all 0 ≤ i < 3k+1;

• T i
1x

k+1
0 = 1 for all 3k+1 ≤ i < 2(3k+1); and

• T i
1x

k+1
0 = 2 for all 2(3k+1) ≤ i < 3k+2.

Therefore, xk+1 has period p = 3k+2. With this, we conclude part 2 of the proposition.

Now, let 0 ≤ j < 2k+1. Using part 2 of the proposition, we have that T i
1y

k+1,j
[0,j) = 0

j
for all

0 ≤ i ≤ 2(3k+1). Using Lemma 3.28 and the fact that T1 commutes with the shift, we obtain
that

T
2(3k+1)+i
1 yk+1,j

[0,j) = T i
1x

k
[2k+1−j,2k+1)

for all 0 ≤ i ≤ 3k+1. Since xk has period 3k+1 we have that

T 3k+1

1 xk+1
[2k+1−j,2k+1]

= 0
j

.

Therefore, yk+1,j has period 2(3k+1) + 3k+1 = 3k+2. With this we conclude part 1.

Already at this point in the section, we could easily think of the elements of AZ
1 that remain

fixed or eventually fixed. The following proposition tells us when the elements of AZ
1 do not

remain fixed or eventually fixed.

Proposition 3.30. If x ∈ AZ
1 is such that xj = for some j ∈ Z, then for all i ∈ N we have

T n
1 xj−i ∈ { , 2 } for infinitely many n > 0.

Proof. We will prove this result by induction on i. The result follows for i = 0 using straightfor-
ward applications of the rules of the automaton (as in Lemma 3.24). Assume the result holds for i.
We may assume that xj−i �= and xj−i−1 �= ; otherwise, the result is straightforward. Hence,

we have that {n > 0 : T n
1 xj−i = 2 } is infinite. Furthermore, by the rules of the automaton for

every n� ∈ {n > 0 : T n
1 xj−i = 2 } we have that T n�+1xj−i−1 = (T n�

xj−i−1 + 1)mod3. With this

we can conclude that for all i ∈ N we have T n
1 xj−i ∈ { , 2 } for infinitely many n > 0.

Now we will combine T1 with the shift map. Let A2 = { , }, and σ : AZ
2 → AZ

2 the shift
map.

Let A = A1 × A2. At times we will identify A with the following set

A = { , 0 , 1 , 2 , , 0 , 1 , 2 }.

Note that with this notation, we identify the point × ∈ A with . In general it will be
clear which we are referring to. Let γ1 : A → A1 and γ2 : A → A2 be the projection functions.
We also extend such functions to AZ → AZ

1 and AZ → AZ
2 , respectively.
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We define the CA T : AZ → AZ locally (and coordinate-wise) as the only CA satisfying:

(γ1(Tx))i = (T1γ1(x))i, and

(γ2(Tx))i =

�
(σγ2(x))i if

�
, 2

�
∩ {xi, xi+1} �= ∅,

(γ2(x))i otherwise.

In other words, on the first coordinate T acts exactly as T1; on the second coordinate, an
arrow advances to the left if and only if the first coordinate is a or a 2 . In case two arrows
overlap they superimpose each other.

In the Introduction, we mentioned that the previous construction is a “local” skew product.
On a skew product the phase space is the product, one coordinate acts normally and the second
acts only if the first coordinate is in a certain position. The main difference is that here the shift
only acts locally.

Though the next table is not needed for the proofs, we provide it in case it is of assistance to
the reader.

Txi =





if xi ∈ { , } ∧ xi+1 ∈ A \ { , 2 };
if xi ∈ { , } ∧ xi+1 ∈ { , 2 };

0 if (xi ∈ { 2 , 2 } ∧ xi+1 ∈ { , 2 })∨;
(xi = 0 ∧ xi+1 ∈ A \ { , , 2 , 2 });

1 if (xi = 0 ∧ xi+1 ∈ { , 2 })∨;
(xi = 1 ∧ xi+1 ∈ A \ { , , 2 , 2 });

2 if (xi = 1 ∧ xi+1 ∈ { , 2 })∨
(xi ∈ { 2 , 2 } ∧ xi+1 ∈ A \ { , , 2 , 2 });

0 if (xi ∈ { 2 , 2 } ∧ xi+1 ∈ { , 2 })∨;
(xi = 0 ∧ xi+1 ∈ A \ { , , 2 , 2 });

1 if (xi = 0 ∧ xi+1 ∈ { , 2 })∨
(xi = 0 ∧ xi+1 ∈ { , , 2 , 2 })∨
(xi = 1 ∧ xi+1 ∈ A \ { , , 2 , 2 });

2 if (xi = 1 ∧ xi+1 ∈ { , 2 })∨
(xi = 1 ∧ xi+1 ∈ { , , 2 , 2 }).

Example 3.31. Let x ∈ AZ such that x[0,6] = 0 0 0 0 . We have that
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T 0x[0,6] = 0 0 0 0 T 14x[0,6] = 1 0 1 2

T 1x[0,6] = 0 0 0 1 T 15x[0,6] = 1 0 2 0

T 2x[0,6] = 0 0 0 2 T 16x[0,6] = 1 1 2 1

T 3x[0,6] = 0 0 1 0 T 17x[0,6] = 1 2 2 2

T 4x[0,6] = 0 0 1 1 T 18x[0,6] = 2 0 0 0

T 5x[0,6] = 0 0 1 2 T 19x[0,6] = 2 0 0 1

T 6x[0,6] = 0 0 2 0 T 20x[0,6] = 2 0 0 2

T 7x[0,6] = 0 1 2 1 T 21x[0,6] = 2 0 1 0

T 8x[0,6] = 0 2 2 2 T 22x[0,6] = 2 0 1 1

T 9x[0,6] = 1 0 0 0 T 23x[0,6] = 2 0 1 2

T 10x[0,6] = 1 0 0 1 T 24x[0,6] = 2 0 2 0

T 11x[0,6] = 1 0 0 2 T 25x[0,6] = 2 1 2 1

T 12x[0,6] = 1 0 1 0 T 26x[0,6] = 2 2 2 2

T 13x[0,6] = 1 0 1 1 T 27x[0,6] = 0 0 0 0 .

In the Pacman CA we looked at how long it would take for a ghost to go through two doors,
but we don’t know exactly what iterations the ghost goes through. In the constructed CA, we
are able to know in which possible iterations the arrow can pass through consecutive 0 s and

exactly in which iterations it does not. Let us start with one 0 .

Lemma 3.32. Let x ∈ AZ such that x[0,2] = 0 . Then T nx0 = for all n �= 3k, where
k ≥ 1.

Proof. From Lemma 3.24 we have that γ1(T
nx1) = 2 if and only if n = 3k − 1, where k ≥ 1.

Then, T nx0 = for all n �= 3k, where k ≥ 1.

As we saw in the proof of Lemma 3.32, the periodicity of (T ix[0,2])i∈Z≥0
was used for when it

is a single 0 . Now, for what we will continue taking advantage of the periodicity but for 2l

0 ’s, where l ≥ 0.

Lemma 3.33. Let l ≥ 0, x ∈ AZ such that x[0,2l+1] = 0
2l

, and k ∈ N. If n �= k(3l+1) +
2(3l) + 1 then T nx0 = .

Proof. By Proposition 3.29 we have that T ix1 has period 3l+1 and

• γ1(T
ix1) = 0 for all 0 ≤ i < 3l;

• γ1(T
ix1) = 1 for all 3l ≤ i < 2(3l);

• γ1(T
ix1) = 2 for all 2(3l) ≤ i < 3l+1.

Note that in general for a point y ∈ X, if γ1(y1) /∈ { , 2 } then γ2(Ty0) = . This implies
that T ix0 = for all i ≤ 2(3l). Furthermore, note that configurations on position 1 imply that
γ1(T

i
1x2) �= 2 for all 2(3l) ≤ i < 3l+1 − 1. Hence, γ2(T

ix1) = for all 2(3l) + 1 ≤ i < 3l+1, and
thus T ix0 = for all 2(3l) + 2 ≤ i ≤ 3l+1. This concludes the proof for k = 0. Using periodicity
we conclude that T nx0 = for all n �= k(3l+1) + 2(3l) + 1, for some k ∈ N.
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Considering x ∈ AZ such that γ1(xi) = 0 for all i ∈ Z then we have that γ1(T
nxi) = 0

for all i ∈ Z and for all n ≥ 0. In other words, the arrows found on x will always stay in the
same place. So, Proposition 3.30 guarantees that, at least for a part of the element mentioned in
the Proposition 3.30, that the arrows keep moving to the left as we iterate. This motivates the
following lemma.

Lemma 3.34. Let x ∈ AZ and j ∈ Z such that γ2(xi) = for all i ≥ j and γ1(xj) = . For
every k ∈ Z there exists N > 0 such that γ2(T

nxk) = for every n ≥ N .

Proof. Let us assume that γ2(xj−1) = . If γ1(xj−1) = , then γ2(Txj−1) = and γ2(Txj−2) =

. But, if γ1(xj−1) ∈ { 0 , 1 , 2 }, then from Proposition 3.30 we have that γ2(T
nxj−1) =

and γ2(T
N+1xj−2) = for n > N = min{n > 0 : γ1(T

nxj−1 = 2 )}. This case repeats for all
i < j − 1.

The following statement will be used to show that (AZ, T ) is not almost equicontinuous.

Proposition 3.35. Let m > 0 and w ∈ A2m+1. There exists x, y ∈ AZ with x[−m,m] = w =
y[−m,m] such that T nx0 �= T ny0 for some n > 0.

Proof. We set xi = and yi = , for every i ∈ Z such that |i| > m. By Lemma 3.34 we
have that there exists N > 0 such that for all n ≥ N we have that γ2(T

nxi) = for all
i ∈ [−m,m]. Since yi = for all i > m and an application of Lemma 3.34 also gives us that
{n ∈ N : γ2(T

ny0) = } is infinite.

Proposition 2.22 helps us to recognize when x ∈ AZ is an equicontinuity point by comparing
the “density of its columns” with elements close enough to the x. Therefore, it is important to
analyze the densities of consecutive 0 s. In the following lemma, we will use the sets SDM

J (x,m)
defined in Definition 2.21.

Lemma 3.36. Let x ∈ AZ such that x[0,2l+1] = 0
2l

, where l ≥ 0. Then

D(SDM
{0} (x, 2l + 1)) =

1

3l+1
.

Proof. There exist y, z ∈ AZ such that y[0,2l+1] = x[0,2l+1] = z[0,2l+1], y2l+1+i = = y−i, and
z2l+1+i = and z−i = , for all i ≥ 1. Hence, we have that

SDM
{0} (x, 2l + 1) = {i ∈ N : i = 3l+1k + 2(3l) + 1 ∀ k ≥ 0}.

Therefore,
D(SDM

{0} (x, 2l + 1)) = D({i ∈ N : i = 3l+1k + 2(3l) + 1 ∀ k ≥ 0})

= lim sup
k→∞

k

3l+1k + 2(3l) + 1)
=

1

3l+1
.

Remark 3.37. Let m > 0 and x ∈ AZ so that γ1(xm) = and γ2(xi) = for all i ∈ Z. Then:

SDM
{j} (x,m) = {i ∈ N : ∃ y ∈ Bm(x), γ2(T

iyj) = }
and

SDM
{−j}(x,m) = {i ∈ N : ∃ y ∈ Bm(x), γ2(T

iy−j) = },
for all |j| ≤ m.
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Lemma 3.38. Let l ≥ 0, w = 0
2l−1

0
2l

, x := ∞ .w ∞, and m = 2l+2l−1+2. Then

D(SDM
{0} (x,m)) = D(SDM

{2l−1+1}(x,m)),

D(SDM
{−i}(x,m)) = D(SDM

{2l−1+1}(x,m)), and

D(SDM
{i} (x,m)) ≤ (2(3l−1) + 1)D(SDM

{2l−1+1}(x,m)),

for all 1 ≤ i ≤ 2l−1.

Proof. For any y ∈ Bm(x) one can check that γ2(T
ny2l−1+1) = if and only if γ2(T

n+2(3l−1)y0) =
. Using this and Remark 3.37, we obtain that

SDM
{0} (x,m) = +SDM

2l−1+1(x,m) + 2(3l−1).

Therefore,
D(SDM

{0} (x,m)) = D(SDM
{2l−1+1}(x,m)).

Notice that for any y ∈ Bm(x) and i ≥ 0 we have that T n+1y−(i+1) = if and only if
T ny−i = . This implies that

SDM
{−i}(x,m) = SDM

{0} (x,m) + i.

Hence,
D(SDM

{−i}(x,m)) = D(SDM
{2l−1+1}(x,m)).

Lastly, let 1 ≤ i ≤ 2l−1. By Lemma 3.29, we have that

• γ1(T
nx1) = 0 for all 0 ≤ n < 3l−1;

• γ1(T
nx1) = 1 for all 3l−1 ≤ n < 2(3l−1);

• γ1(T
nx1) = 2 for all 2(3l−1) ≤ n < 3l.

This implies that for any y ∈ Bm(x) we have that γ2(T
nyi) = for at most 2(3l−1) consecutive

n. Hence, by Remark 3.37 we can conclude that

�(SDM
{i} (x,m) ∩ [0, (k + 1)3l+1]) ≤ (2(3j) + 1)�(SDM

{2l−1+1}(x,m) ∩ [0, (k + 1)3l+1]),

for all k ≥ 0. Therefore,

D(SDM
{i} (x,m)) ≤ (2(3l−1) + 1)D(SDM

{2l−1+1}(x,m)).

One of the objectives in the construction of this example is to show that diam-mean
equicontinuous points exist and that they are dense. Hence the importance of the following
proposition.

Proposition 3.39. Let k > 0, w ∈ Ak and

x := ∞ .w 0 0
2

0
22 · · · 0

2n · · · .

We have that x is a diam-mean equicontinuity point.
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Proof. We will prove that x is a diam-mean equicontinuity point with the use of Proposition
2.22. Let m ≥ 0. First notice that, without loss of generality we may assume that γ2(wi) =
for every 1 ≤ i ≤ k (from Lemma 3.34 there exists M > 0 such that γ2(T

Mxi) = for all
0 ≤ i < k). Let l > 0 so that k < 2l and

2(3l−1 + 1)

3l+1
≤ 1

2m+2
.

Let k ≤ j ≤ k + l +
�l−1

i=0 2
i. By applying Lemma 3.38 recurrently (and using that k < 2l), we

have that

D(SDM
{−j,j}(x, k + l +

�l
i=0 2

i)) ≤ 2(3l−1 + 1)D(SDM
{|w|+l+

�l−1
i=0 2

i}(x, k + l +
�l

i=0 2
i)).

Using that k < 2l and similar techniques as the ones used in the proof of Lemma 3.38 we can
conclude the same inequality for j ≤ k + l +

�l−1
i=0 2

i. By Lemma 3.36 and the choice of l, we
obtain that

D(SDM
{−j,j}(x, k + l +

�l
i=0 2

i)) ≤ 2(3l−1+1)
3l+1

≤ 1
2m+2 .

Therefore, by Proposition 2.22, we have that x is a diam-mean equicontinuity point.

We conclude this section with the following statement and the main purpose for building
this example.

Theorem 3.40. (AZ, T ) is almost diam-mean equicontinuous but not almost equicontinuous
(and also not mean equicontinuous).

Proof. From Proposition 3.39 we have EQDM is dense. Hence, by Proposition 1.12, EQDM is
residual. So, (AZ, T ) is almost diam-mean equicontinuous. By Proposition 3.35 there are no
equicontinuity points. Therefore, (AZ, T ) is not almost equicontinuous.

The next result is not in [5].

Proposition 3.41. (AZ, T ) is not cofinitely sensitive but it is syndetically sensitive.

Proof. Let w ∈ A+ such that w = 0 . From Lemma 3.36 we have that NT ([w], 1) is not a

cofinite set. Let w ∈ A+. Without of lost of generality, let us assume that wi ∈ { , 0 , 1 , 2 }.
Let us fix x = ∞ 0 .w 0

∞
and ∞ .w ∞. By Lemma 3.38 we have that D(SDM

{−i,i}(x, |w|)) > 0

for all 0 ≤ i < |w|. Hence, NT ([w]0, 1) is syndetic. Therefore (A
Z, T ) is syndetically sensitive.

3.5 Diam-mean sensitivity

All the results in this section and their proofs, except for Corollary 3.44 and Proposition 3.45,
are contained in [5].

In Section 3.2, we construct Pacman Level 2 to show that Kurka’s dichotomy does not hold
for the mean version. Similarly, we will construct a CA that shows that the diam-mean version
of Kurka’s dichotomy does not hold.
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Let T : AZ → AZ the CA from the Section 3.3 and A3 = {a, b, c}. We define T3 : A
Z
3 → AZ

3 as

T3xi =





a if xi = a;
b if xi = c;
c if xi = b.

We set AS := A × A3. For every x ∈ AS, we have that x1 is the component on A and x2

is the component on A3. Let id : AZ
3 → AZ

3 be the identity function and TS : AZ
S → AZ

S a CA
defined locally with

TSxi =

�
(Tx1

i , id(x
2
i )) if γ2(x

1
i ) = ;

(Tx1
i , T3x

2
i ) otherwise.

Thus, on A, TS behaves exactly as T , and on A3, as T3 except if there is an arrow on the first
coordinate. When this happens the periodicity on b and c changes.

In the next lemma, we establish that the set of diam-mean equicontinuity points is not dense.

Lemma 3.42. Let m > 0 and w ∈ Am
S such that w0 = ( , b). Then, there exist x, y ∈ AZ

S such
that

x[0,|w|−1] = y[0,|w|−1] = w

and the set
Zn≥0 \ {n ∈ Zn≥0 : T

n
S x0 �= T n

S y0}
is finite.

Proof. Let w ∈ Am
S as in the hypothesis of the statement. Let us define

x = ∞( , a).w( , a)( , a)∞

and
y = ∞( , a).w( , a)∞.

Using Lemma 3.34 we can assume, without loss of generality, that

wi ∈ {(p, q) : p ∈ { , 0 , 1 , 2 } ∧ q ∈ A3}.

Now, there exists N > 0 such that TN
S x0 = ( , q), where q ∈ {b, c}. We have two cases to prove.

Case 1: TN
S x0 = ( , b).

This implies that TN+1
S x0 = ( , b). Meanwhile, TN+1

S y0 = ( , c). Therefore, we can easily
see that TN+i

S x0 �= TN+i
S y0, for all i > 0.

Case 2: TN
S x0 = ( , c).

Again we have that TN+1
S x0 = ( , c), so TN+i

S x0 �= TN+i
S y0 for all i ≥ 0.

Notice that for all ε > 0, any y ∈ Bε(x), where x0 = ( , b), is not a diam-mean equicontinuity
point.

Theorem 3.43. (AZ
S, TS) is neither diam-mean sensitive nor almost diam-mean equicontinuous.
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Proof. From Lemma 3.42 we conclude that for every x ∈ AZ
S such that x0 = ( , b), we have that

x is not a diam-mean equicontinuity point.
From Proposition 3.39, we have that

x := ∞( , a).( , a)( 0 , a)( , a)( 0 , a)2( , a)( 0 , a)2
2 · · · ( , a)( 0 , a)2

l · · ·

is a diam-mean equicotinuity point. Hence, for all ε > 0 there exists l ≥ 0 such that

lim sup
n→∞

�n
j=0 diam(T j

S(Bl+
�l

i=0 2
i(x)))

n+ 1
< ε.

Therefore, (AZ
S, TS) is not diam-mean sensitive.

From Pacman CA Level 2 we have that there are CA that are neither almost mean equicon-
tinuous nor mean sensitive. Now, from (AZ

S, TS), we have that there exist CA such that they are
neither almost diam-mean equicontinuous nor diam-mean sensitive. Is (AZ

S, TS) mean sensitive
or almost mean equicontinuous? The answer is none, as we will see in the next corollary.

Corollary 3.44. (AZ
S, TS) is neither mean sensitive nor almost mean equicontinuous.

Proof. From Lemma 3.42 we have that (AZ
S, TS) is not almost mean equicontinuous; and by the

second part of the proof of Theorem 3.18, we have that (AZ
S, TS) is not mean sensitive.

As we saw, (AZ
S, TS) is neither mean sensitive nor almost mean equicontinuous. So, where

does this AC lie?

Proposition 3.45. (AZ
S, TS) is not confinitely sensitive. However, (AZ

S, TS) is syndetically
sensitive.

Proof. Let w ∈ A+
S such that w = ( , a)( 0 , a)( , a). From Lemma 3.36, we have that any

x ∈ [w] satisfies that

D(SDM
{0} (x, |w|)) ≤ 1

3
.

Hence, we have that (AZ
S, TS) is not confinitely sensitive.

Let w ∈ A+
S . Without loss of generality, let us assume that wi ∈ {(p, q) : p ∈ { , 0 , 1 , 2 }∧

q ∈ A3} for all 0 ≤ i < |w|. Let fix x = ∞( , a).w( , a)∞ and y = ∞( , a).w( , a)∞. By the
above, we have that D(SDM

{i} (x, |w|)) > 0 for all 0 ≤ i < |w|. Hence, NTS
([w], 1) is syndetic.

Therefore, (AZ
S, TS) is syndetically sensitive.
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Chapter 4

Final comments

For this final chapter we will see some questions derived from the results of our research and
other questions related to the topic of our research. We will divide the chapter into small sections
to give context to the questions raised.

4.1 Minimal TDS

A minimal TDS is mean equicontinuous if and only if it is not mean sensitive (see [22, 13].
Considering Proposition 2.10, we ask.

Question 4.1. Does there exist a minimal subshift (X, σ) and a CA (X, T ) that is neither mean
equicontinuous nor mean sensitive?

We remind the reader that a TDS is expansive if ther exists ε > 0 such that for every x, y ∈ X
there exists n > 0 such that d(T nx, T ny) > ε. We know that every expansive CA is sensitive,
thus we ask.

Question 4.2. Is every expansive CA mean sensitive?

4.2 One dimensional CA

In Chapter 2 we saw some examples of Elementary Cellular Automata (ECA). We conjecture
that a stronger dichotomy holds in this case.

Question 4.3. Is every elementary CA that is not almost equicontinuous cofinitely sensitive?

So far, we have seen that all the examples presented in this thesis are either cofinitely sensitive
or syndetically sensitive. Even (AZ

S, TS) is neither almost mean equicontinuous nor diam-mean
sensitive, but it is syndetically sensitive.

Question 4.4. Does there exist a one-dimensional CA that is neither almost mean equicontinuous
nor syndetically sensitive?

Another more general question is the following:

Question 4.5. Does there exist a CA that is almost mean equicontinuous that is niether almost
diam-mean equicontinuous nor diam-mean sensitive?

45



4.3 Monotone and conservative CA

Let (AZ, T ) be a CA, with A = {0, . . . , q − 1}, with q ∈ N, and let CP be the set of all periodic
configurations in AZ; for each c ∈ CP choose a period p(c). Let φ be a function φ : Ab → R,
where b is a non-negative integer. Then φ is said to be a non-increasing additive quantity
under T if and only if

p(c)−1�

k=0

φ(T (c)k, . . . , T (c)k+b−1) ≤
p(c)−1�

k=0

φ(ck, . . . , ck+b−1), ∀c ∈ CP . (4.1)

Similarly, φ is said to be non-decreasing additive quantity if condition (4.1) holds with the
inequality in the other direction. It is easy to see that φ is non-increasing if and only if -φ is
non-decreasing. If φ is both non-increasing and non-decreasing, it is said to be a conserved
additive quantity. We said that φ is monotone if it is either non-increasing or nondecreasing.

The Pacman CA is monotone but not conservative.
A CA is said to be conservative if A is a subset of the integers and the identity is conserved.

Question 4.6. For conservative CA, is almost equicontinuity and not mean sensitivity equivalent?

4.4 Measure sensitivity and equicontinuity

Definition 4.7. Let (X, T ) be a TDS and µ a Borel probability measure on X.

1. We say (X, T ) is µ-equicontinuous if for every τ > 0 there exists a compact set M ⊂ X
such that µ(M) > 1− τ and for every ε > 0 there exists δ > 0 such that if x, y ∈ M and
d(x, y) ≤ δ then d(T nx, T ny) ≤ ε ∀n ∈ N.

2. We say (X, T ) is µ-sensitive if there exists ε > 0 such that

µ× µ(
�
(x, y) ∈ X2 : ∃n ∈ N s.t. d(T nx, T ny)

�
) = 1.

Transitivity plays an important role when talking about the Akin-Auslander-Berg dichotomy
(see Theorem 1.7). Now to talk about equicontinuity involving measures it is natural to introduce
the concept of ergodicity which plays an important role for the Huang-Lu-Ye dichotomy.

Definition 4.8. Let (X, T ) be a TDS and µ a Borel probability measure. We say that µ is
ergodic if µ(A) = 0 or 1 for every Borel set A ⊆ X such that T−1(A) = A.

Theorem 4.9. [19] Let (X, T ) be a TDS and µ a T -ergodic Borel probability measure on X.
Then (X, T ) is µ-equicontinuous if and only if it is not µ-sensitive.

Just as we have Kurka’s dichotomy for CA, we also have a dichotomy for CA with respect to
µ-sensitive and µ-equicontinuous without assuming ergodicity with respect to the CA.

Theorem 4.10. [16] Let (AZ, T ) be a CA and µ a σ-ergodic Borel probability measure on X.
Then (X, T ) is µ-equicontinuous if and only if it is not µ-sensitive.

Note that for the theorem above µ may not be T -ergodic.

Naturally we may define the mean versions of µ-sensitive and µ-equicontinuous.
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Definition 4.11. Let (X, T ) be a TDS and µ a Borel probability measure on X.

1. We say (X, T ) is µ-mean equicontinuous if for every τ > 0 there exists a compact set
M ⊂ X such that µ(M) > 1 − τ and for every ε > 0 there exists δ > 0 such that if
x, y ∈ M and d(x, y) ≤ δ then

lim sup
n→∞

1

n

n�

i=1

d(T ix, T iy) ≤ ε.

2. We say (X, T ) is µ-mean sensitive if there exists ε > 0 such that

µ× µ(

�
(x, y) ∈ X2 : lim sup

n→∞

1

n

n�

i=1

d(T ix, T iy) > ε

�
) = 1.

We now have the analog of Theorem 4 for the mean µ version (the Garćıa-Ramos dichotomy).

Theorem 4.12. [13] Let (X, T ) be a TDS and µ a T -ergodic Borel probability measure on X.
Then (X, T ) is µ-mean equicontinuous if and only if it is not µ-mean sensitive.

Definition 4.13. Let A be an finite alphabet and m > 0. The Bernoulli measures are defined
on cylinder sets and then extended to the whole sigma-algebra; that is, let w ∈ An, where n > 0,
[w]m := {x ∈ AZ : x[m,m+|w|) = w} we have that

µ([w]m) =

|w|�

i=1

pi,

where pi is the probability of wi for 1 ≤ i ≤ |w|.

Having these tools and influenced by the work in these thesis we have the following questions.

Question 4.14. Is there a one-dimensional CA and a Bernoulli probability measure µ, such
that the CA is µ-mean equicontinuous but not µ-equicontinuous?

Question 4.15. Is there a one-dimensional CA and a Bernoulli probability measure µ, such
that the CA is neither µ-mean sensitive nor µ-mean equicontinuous?
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